Suppr超能文献

基于前额脑电图相关性的人类情绪识别与分类。

Frontal EEG correlation based human emotion identification and classification.

作者信息

Thiruselvam S V, Reddy M Ramasubba

机构信息

Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India.

出版信息

Phys Eng Sci Med. 2025 Mar;48(1):121-132. doi: 10.1007/s13246-024-01495-w. Epub 2024 Nov 14.

Abstract

Humans express their feelings and intentions of their actions or communication through emotions. Recent advancements in technology involve machines in human communication in day-to-day life. Thus, understanding of human emotions by machines will be very helpful in assisting the user in a far better way. Various physiological and non-physiological signals can be used to make the machines to recognize the emotion of a person. The identification of emotional content in the signals is crucial to understand emotion and the machines act with emotional intelligence at appropriate times, thus providing a better human machine interaction with emotion identification system and mental health monitoring for psychiatric patients. This work includes the creation of an emotion EEG dataset, the development of an algorithm for identifying the emotion elicitation segments in the EEG signal, and the classification of emotions from EEG signals. The EEG signals are divided into 3s segments, and the segments with emotional content are selected based on the decrease in correlation between the frontal electrodes. The selected segments are validated with the facial expressions of the subjects in the appropriate time segments of the face video. EEGNet is used to classify the emotion from the EEG signal. The classification accuracy with the selected emotional EEG segments is higher compared to the accuracy using all the EEG segments. In subject-specific classification, an average accuracy of 80.87% is obtained from the network trained with selected EEG segments, and 70.5% is obtained from training with all EEG segments. In subject-independent classification, the accuracy of classification is 67% and 63.8% with and without segment selection, respectively. The proposed method of selection of EEG segments is validated using the DEAP dataset, and classification accuracies and F1-scores of subject dependent and subject-independent methods are presented.

摘要

人类通过情感来表达他们行动或交流的感受和意图。近期的技术进步使机器参与到日常生活中的人际交流中。因此,机器对人类情感的理解将非常有助于以更好的方式辅助用户。各种生理和非生理信号可用于使机器识别一个人的情感。信号中情感内容的识别对于理解情感至关重要,并且机器能够在适当的时候以情商行事,从而通过情感识别系统提供更好的人机交互以及对精神病患者进行心理健康监测。这项工作包括创建一个情感脑电图数据集、开发一种用于识别脑电图信号中情感诱发片段的算法以及从脑电图信号中对情感进行分类。脑电图信号被分成3秒的片段,基于额电极之间相关性的降低来选择具有情感内容的片段。所选片段在面部视频的适当时间段内与受试者的面部表情进行验证。EEGNet用于从脑电图信号中对情感进行分类。与使用所有脑电图片段的准确率相比,使用所选情感脑电图片段的分类准确率更高。在特定受试者分类中,使用所选脑电图片段训练的网络平均准确率为80.87%,使用所有脑电图片段训练的平均准确率为70.5%。在独立于受试者的分类中,有和没有片段选择时的分类准确率分别为67%和63.8%。所提出的脑电图片段选择方法使用DEAP数据集进行了验证,并给出了依赖于受试者和独立于受试者方法的分类准确率和F1分数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验