Institute of Cartography and Geoinformation, ETH Zürich, Zurich, Switzerland.
Lufthansa Systems FlightNav, Opfikon, Switzerland.
Sci Rep. 2024 Nov 14;14(1):27955. doi: 10.1038/s41598-024-79172-x.
Unlike classic audio guides, intelligent audio guides can detect users' level of attention and help them regain focus. In this paper, we investigate the detection of mind wandering (MW) from eye movements in a use case with a long focus distance. We present a novel MW annotation method for combined audio-visual stimuli and collect annotated MW data for the use case of audio-guided city panorama viewing. In two studies, MW classifiers are trained and validated, which are able to successfully detect MW in a 1-s time window. In study 1 (n = 27), MW classifiers from gaze features with and without eye vergence are trained (area under the curve of at least 0.80). We then re-validate the classifier with unseen data (study 2, n = 31) that are annotated using a memory task and find a positive correlation (repeated measure correlation = 0.49, p < 0.001) between incorrect quiz answering and the percentage of time users spent mind wandering. Overall, this paper contributes significant new knowledge on the detection of MW from gaze for use cases with audio-visual stimuli.
与传统的音频导览不同,智能音频导览可以检测用户的注意力水平并帮助他们重新集中注意力。在本文中,我们研究了从眼动中检测心流(MW)的问题,研究对象是在一个具有长注视距离的使用案例中。我们提出了一种新的用于视听刺激的 MW 注释方法,并为音频引导城市全景浏览的使用案例收集了注释的 MW 数据。在两项研究中,我们训练和验证了 MW 分类器,这些分类器能够在 1 秒的时间窗口内成功检测到 MW。在研究 1(n=27)中,我们训练了具有和不具有眼辐合的注视特征的 MW 分类器(曲线下面积至少为 0.80)。然后,我们使用记忆任务对未见过的数据(研究 2,n=31)进行重新验证,并发现错误回答测验的次数与用户心流时间百分比之间存在正相关(重复测量相关性=0.49,p<0.001)。总体而言,本文为使用视听刺激的案例从注视中检测 MW 做出了重要的新贡献。