Suppr超能文献

机器学习方法预测精神病药物治疗结局。

Machine learning methods to predict outcomes of pharmacological treatment in psychosis.

机构信息

Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.

Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.

出版信息

Transl Psychiatry. 2023 Mar 2;13(1):75. doi: 10.1038/s41398-023-02371-z.

Abstract

In recent years, machine learning (ML) has been a promising approach in the research of treatment outcome prediction in psychosis. In this study, we reviewed ML studies using different neuroimaging, neurophysiological, genetic, and clinical features to predict antipsychotic treatment outcomes in patients at different stages of schizophrenia. Literature available on PubMed until March 2022 was reviewed. Overall, 28 studies were included, among them 23 using a single-modality approach and 5 combining data from multiple modalities. The majority of included studies considered structural and functional neuroimaging biomarkers as predictive features used in ML models. Specifically, functional magnetic resonance imaging (fMRI) features contributed to antipsychotic treatment response prediction of psychosis with good accuracies. Additionally, several studies found that ML models based on clinical features might present adequate predictive ability. Importantly, by examining the additive effects of combining features, the predictive value might be improved by applying multimodal ML approaches. However, most of the included studies presented several limitations, such as small sample sizes and a lack of replication tests. Moreover, considerable clinical and analytical heterogeneity among included studies posed a challenge in synthesizing findings and generating robust overall conclusions. Despite the complexity and heterogeneity of methodology, prognostic features, clinical presentation, and treatment approaches, studies included in this review suggest that ML tools may have the potential to predict treatment outcomes of psychosis accurately. Future studies need to focus on refining feature characterization, validating prediction models, and evaluate their translation in real-world clinical practice.

摘要

近年来,机器学习(ML)在精神分裂症治疗结果预测的研究中是一种很有前途的方法。在这项研究中,我们回顾了使用不同的神经影像学、神经生理学、遗传学和临床特征来预测精神分裂症不同阶段患者抗精神病治疗结果的 ML 研究。我们查阅了截至 2022 年 3 月在 PubMed 上发表的文献。总的来说,共纳入了 28 项研究,其中 23 项使用了单一模式方法,5 项结合了多种模式的数据。大多数纳入的研究认为结构和功能神经影像学生物标志物是用于 ML 模型的预测特征。具体来说,功能磁共振成像(fMRI)特征有助于预测精神病的抗精神病治疗反应,具有较好的准确性。此外,几项研究发现,基于临床特征的 ML 模型可能具有足够的预测能力。重要的是,通过检查结合特征的附加效果,应用多模态 ML 方法可能会提高预测价值。然而,大多数纳入的研究都存在一些局限性,例如样本量小和缺乏复制测试。此外,纳入研究之间存在相当大的临床和分析异质性,这在综合研究结果和得出稳健的总体结论方面带来了挑战。尽管方法学、预后特征、临床表现和治疗方法复杂且存在异质性,但本综述中纳入的研究表明,ML 工具可能有潜力准确预测精神分裂症的治疗结果。未来的研究需要集中在改进特征描述、验证预测模型以及评估其在现实临床实践中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a8/9981732/78c1a4f579b9/41398_2023_2371_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验