Suppr超能文献

探讨初始髋部骨折后患者多种合并症轨迹与预后结局之间的关系。

Examining the relationships between patients' multimorbidity trajectories and prognostic outcomes after the initial hip fracture.

机构信息

Department of Systems and Operations Management, David Nazarian College of Business and Economics, California State University Northridge, Northridge, CA, USA.

Department of Marketing, Analytics and Professional Sales, School of Business Administration, University of Mississippi, University, MS, USA.

出版信息

Sci Rep. 2024 Nov 16;14(1):28329. doi: 10.1038/s41598-024-79642-2.

Abstract

Hip fractures significantly affect patients' health and quality of life. Despite therapeutic treatments, many patients continue to experience poor prognoses that include recurrent fractures and mortality, especially the older ones. Therefore, understanding important factors associated with post-fracture prognoses is critical. This study focuses on patients' multimorbidity trajectories and examines how the trajectory's time span, number of coexisting chronic diseases, and sequential disease patterns relate to distinct prognostic outcomes. From the National Health Insurance Research Database in Taiwan, we obtain a sample of 128,822 patients who suffered an initial hip fracture between 1996 and 2011. We use this sample to analyze the relationships between multimorbidity trajectories and prognostic outcomes after an initial hip fracture. The results reveal that a patient's multimorbidity trajectory's time span and number of chronic diseases significantly associate with his or her post-fracture prognosis. In addition, essential sequential patterns of chronic diseases relate to post-fracture prognoses too. We then leverage the discovered relationships to develop a cross-attention neural network method for estimating patients' post-fracture prognoses and demonstrate its predictive utilities relative to several prevalent machine leaning methods. This study underscores the importance of leveraging the time span, number of chronic diseases, and sequential disease patterns in patients' multimorbidity trajectory profile to estimate their prognoses within three years of an initial hip fracture, which can support physicians' clinical decisions and patient management.

摘要

髋部骨折显著影响患者的健康和生活质量。尽管进行了治疗,但许多患者仍继续经历预后不良的情况,包括骨折复发和死亡,尤其是老年人。因此,了解与骨折后预后相关的重要因素至关重要。本研究关注患者的多病共患轨迹,并研究轨迹的时间跨度、共存慢性疾病的数量以及疾病的顺序模式如何与不同的预后结果相关。我们从台湾的国家健康保险研究数据库中获取了 1996 年至 2011 年间首次发生髋部骨折的 128822 名患者的样本。我们使用该样本分析了初始髋部骨折后多病共患轨迹与预后结果之间的关系。结果表明,患者多病共患轨迹的时间跨度和慢性疾病数量与他或她的骨折后预后显著相关。此外,慢性疾病的重要顺序模式也与骨折后预后相关。然后,我们利用发现的关系,开发了一种用于估计患者骨折后预后的交叉注意神经网络方法,并展示了其相对于几种流行的机器学习方法的预测效用。本研究强调了在估计初始髋部骨折后三年内患者的预后时,利用患者多病共患轨迹特征中的时间跨度、慢性疾病数量和疾病顺序模式的重要性,这可以支持医生的临床决策和患者管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/886b/11569216/8a2a3adc913c/41598_2024_79642_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验