Suppr超能文献

利用网络负性情绪预测北京市政府搬迁中的风险应对行为。

Using online negative emotions to predict risk-coping behaviors in the relocation of Beijing municipal government.

机构信息

Department of Public Administration, School of Law and Humanities, China University of Mining and Technology (Beijing), Beijing, 100083, China.

School of Art and Design, Beijing Forestry University, Beijing, 100083, China.

出版信息

Sci Rep. 2024 Nov 16;14(1):28337. doi: 10.1038/s41598-024-79846-6.

Abstract

This article explores the use of online negative emotions to predict public risk-coping behaviors during urban relocation. Through a literature review, the paper proposes hypotheses that anticipate advanced prediction of public risk-coping behaviors based on online negative emotions. The study's empirical focus is on the relocation of the Beijing municipal government, using time series data for Granger causality analysis in EViews 10.0 software. Data on online negative emotions is sourced from Sina Weibo. After data cleaning, 1420 pieces of data related to the relocation policy of the Beijing Municipal Government within the period from June 9, 2015 to April 28, 2019 are retained. while risk-coping behaviors are measured through public information search behaviors and the incidence of violent crimes, the data coverage is also from June 9, 2015 to April 28, 2019. The results indicated that: (1) Online negative emotions regarding the relocation policy predict public risk-coping behaviors in advance. (2) Negative comments are more effective predictors than negative feelings; (3) Negative emotions about relocation policy formulation predict risk-coping behaviors better than those related to policy effectiveness and implementation; (4) Negative emotions from individuals better predict public risk-coping behaviors than those from institutions; (5) Negative emotions from key stakeholders better predict public risk-coping behaviors than those from non-key or marginal stakeholders. It is recommended that relevant departments establish a real-time monitoring system to track negative public opinions and emotions expressed online, adopt a stakeholder-centric approach to facilitate communication, and promote transparency and educational campaigns to address the challenges of urban relocation. In future studies, methods such as expanding the sample size and adding indicators will be used to address the limitations of potential bias in sample data.

摘要

本文探讨了利用网络负面情绪预测城市搬迁过程中公众的风险应对行为。通过文献回顾,本文提出了基于网络负面情绪预测公众风险应对行为的假设。研究的实证重点是北京市政府的搬迁,使用 EViews10.0 软件中的时间序列数据进行格兰杰因果关系分析。网络负面情绪数据来源于新浪微博。经过数据清理,保留了 2015 年 6 月 9 日至 2019 年 4 月 28 日期间与北京市政府搬迁政策相关的 1420 条数据,而风险应对行为则通过公众信息搜索行为和暴力犯罪发生率来衡量,数据覆盖范围也为 2015 年 6 月 9 日至 2019 年 4 月 28 日。研究结果表明:(1)搬迁政策相关的网络负面情绪可以提前预测公众的风险应对行为;(2)负面评论比负面情绪更具预测效力;(3)关于搬迁政策制定的负面情绪比关于政策效果和执行的负面情绪更能预测风险应对行为;(4)个人的负面情绪比机构的负面情绪更能预测公众的风险应对行为;(5)关键利益相关者的负面情绪比非关键或边缘利益相关者的负面情绪更能预测公众的风险应对行为。建议相关部门建立实时监测系统,跟踪在线表达的负面公众意见和情绪,采用以利益相关者为中心的方法促进沟通,并开展透明度和教育活动,以应对城市搬迁的挑战。在未来的研究中,将采用扩大样本量和添加指标的方法,以解决样本数据潜在偏差的局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67f3/11569242/56a98b78259e/41598_2024_79846_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验