Suppr超能文献

揭示自组装肽纳米纤维中两个关键核心RADA与KSL相比在骨再生中的优越功能:来自体外和体内研究的见解。

Unveiling the superior function of RADA in bone regeneration compared to KSL as two critical cores within self-assembling peptide nanofibers: Insights from in vitro and in vivo studies.

作者信息

Rasoulian Bita, Sheikholislam Zahra, Houshdar Tehrani Mohammad Hassan, Chegeni Solmaz, Hoveizi Elham, Rezayat Seyed Mahdi, Tavakol Shima

机构信息

Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.

School of Biomedical Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.

出版信息

Regen Ther. 2024 Oct 30;26:999-1009. doi: 10.1016/j.reth.2024.09.010. eCollection 2024 Jun.

Abstract

INTRODUCTION

Self-assembling peptide nanofibers have emerged as promising biomaterials in the realm of bone tissue engineering due to their biocompatibility, biodegradability, and ability to mimic the native extracellular matrix. This study delved into the comparative efficacy of two distinct self-assembling peptide nanofibers, RADA-BMHP1 and KSL-BMHP1, both incorporating the biological motif of BMHP1, but differing in their core peptide sequences.

METHODS

Cell viability and osteogenic differentiation in rat mesenchymal stem cells (rMSCs), and bone regeneration in rat were compared.

RESULTS

In vitro assays revealed that KSL-BMHP1 promoted enhanced cell viability, and nitric oxide production than RADA-BMHP1, an effect potentially attributable to its lower hydrophobicity and higher net charge at physiological pH. Conversely, RADA-BMHP1 induced superior osteogenic differentiation, evidenced by upregulation of key osteogenic genes, increased alkaline phosphatase activity (ALP), and enhanced matrix mineralization which may be attributed to its higher protein-binding potential and grand hydropathy, facilitating interactions between the peptide nanofibers and proteins involved in osteogenesis. In vivo experiments utilizing a rat bone defect model demonstrated that both peptide nanofibers improved bone regeneration at the genes level and ALP activity, with RADA-BMHP1 exhibiting a more pronounced increase in bone formation compared to KSL-BMHP1. Histological evaluation using H&E, Masson's trichrome and Wright-Giemsa staining confirmed the biocompatibility of both nanofibers.

CONCLUSION

These findings underscore the pivotal role of the core structure of self-assembling peptide nanofibers, beyond their biological motif, in the fate of tissue regeneration. Further research is warranted to optimize the physicochemical properties and functionalization of these nanofibers to enhance their efficacy in bone regeneration applications.

摘要

引言

自组装肽纳米纤维因其生物相容性、生物可降解性以及模拟天然细胞外基质的能力,已成为骨组织工程领域中颇具前景的生物材料。本研究深入探讨了两种不同的自组装肽纳米纤维RADA - BMHP1和KSL - BMHP1的比较效果,这两种纤维都包含BMHP1的生物学基序,但核心肽序列不同。

方法

比较了大鼠间充质干细胞(rMSCs)的细胞活力和成骨分化以及大鼠的骨再生情况。

结果

体外实验表明,KSL - BMHP1比RADA - BMHP1能促进更高的细胞活力和一氧化氮生成,这种效应可能归因于其在生理pH值下较低的疏水性和较高的净电荷。相反,RADA - BMHP1诱导了更好的成骨分化,关键成骨基因上调、碱性磷酸酶活性(ALP)增加以及基质矿化增强证明了这一点,这可能归因于其更高的蛋白质结合潜力和较大的亲水性,促进了肽纳米纤维与参与骨生成的蛋白质之间的相互作用。利用大鼠骨缺损模型进行的体内实验表明,两种肽纳米纤维在基因水平和ALP活性方面都改善了骨再生,与KSL - BMHP1相比,RADA - BMHP1在骨形成方面表现出更显著的增加。使用苏木精和伊红(H&E)、马松三色染色和瑞氏 - 吉姆萨染色进行的组织学评估证实了两种纳米纤维的生物相容性。

结论

这些发现强调了自组装肽纳米纤维的核心结构在组织再生命运中的关键作用,这一作用超越了它们的生物学基序。有必要进一步研究以优化这些纳米纤维的物理化学性质和功能化,以提高它们在骨再生应用中的功效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/283c/11564076/ec6414245925/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验