Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
Mater Sci Eng C Mater Biol Appl. 2019 Aug;101:148-158. doi: 10.1016/j.msec.2019.03.097. Epub 2019 Mar 27.
Recent studies suggest that nanotopography can trigger colocalization of integrins and bone morphogenetic protein 2 (BMP2) receptors (e.g., BMPR1A), thereby leading to osteogenesis. In this study, the bone marrow homing peptide 1 (BMHP1) motif was bound to a self-assembling peptide core to form a hydrogel-based nanofiber (R-BMHP1). The docking and molecular dynamic study revealed that the R-BMHP1 sequence induced a stronger electrostatic interaction than BMP2 through arginines in the RADA core sequence and through lysine24 in the BMHP1 motif with BMPR1A. Notably, decrease of polar solvation binding energy will enhance the total binding energy and increases bone regeneration even more than BMP2 The enhanced osteogenesis and bone repair potential of R-BMHP1 nanofiber might be related to its chemical interaction with BMPR1A, which triggered downstream signal transduction through osteogenic genes overexpression in osteo-differentiated mesenchymal stem cells (MSCs), as well as implanted critical-sized bone defects in rats. Following that, calcium deposition occurred by osteoblast-like cells, ALP activity increased in osteodifferentiation MSCs and rat serum, and calcium density improved in bone defects (X-ray). The nanofiber was biocompatible and enhanced the cell viability of MSCs, without multinuclear cell infiltration into the defect site. Taking everything into account, not only does nanotopography induce osteogenesis through colocalization of BMPRs and integrins, but also R-BMHP1 nanofibers (considering their chemical structure) induce cell proliferation, osteogenesis, and bone repair through strong electrostatic interaction with BMPR1A and downstream signaling. The entire outcome of this study manifests the plausibility of R-BMHP1 for spine and spinal cord injury repair.
最近的研究表明,纳米拓扑结构可以触发整合素和骨形态发生蛋白 2(BMP2)受体(例如,BMPR1A)的共定位,从而导致成骨作用。在这项研究中,骨髓归巢肽 1(BMHP1)基序与自组装肽核心结合形成水凝胶基纳米纤维(R-BMHP1)。对接和分子动力学研究表明,与 BMP2 相比,R-BMHP1 序列通过 RADA 核心序列中的精氨酸和 BMHP1 基序中的赖氨酸 24 与 BMPR1A 诱导更强的静电相互作用。值得注意的是,极性溶剂结合能的降低将增强总结合能,并比 BMP2 更能增强骨再生。R-BMHP1 纳米纤维增强的成骨和骨修复潜力可能与其与 BMPR1A 的化学相互作用有关,这种相互作用通过成骨分化间充质干细胞(MSCs)中骨生成基因的过表达触发下游信号转导,以及在大鼠植入临界尺寸的骨缺损。之后,成骨样细胞发生钙沉积,成骨分化 MSC 和大鼠血清中碱性磷酸酶(ALP)活性增加,骨缺损部位的钙密度提高(X 射线)。纳米纤维具有生物相容性,并增强了 MSC 的细胞活力,而没有多核细胞渗透到缺陷部位。综上所述,纳米拓扑结构不仅通过 BMPRs 和整合素的共定位诱导成骨作用,而且 R-BMHP1 纳米纤维(考虑到其化学结构)通过与 BMPR1A 的强静电相互作用和下游信号转导诱导细胞增殖、成骨和骨修复。本研究的全部结果表明,R-BMHP1 用于脊柱和脊髓损伤修复是合理的。