Mohajer Mohammad Hossein, Khademi Ahmad, Rahmani Maede, Monfaredi Motahare, Hamidi Aidin, Mirjalili Mohammad Hossein, Ghomi Hamid
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran.
Agriculture Research, Education and Extension Organization (AREEO), Seed and Plant Certification and Registration Institute (SPCRI), Karaj, Iran.
Heliyon. 2024 Oct 31;10(21):e40020. doi: 10.1016/j.heliyon.2024.e40020. eCollection 2024 Nov 15.
This study explores the synergistic effects of gas composition and electric field modulation on beetroot seed germination using dielectric barrier discharge (DBD) plasma. The investigation initially focuses on the impact of air plasma exposure on germination parameters, varying both voltage and treatment duration. Subsequently, the study examines how different gas compositions (argon, nitrogen, oxygen, and carbon dioxide) affect germination outcomes under optimal air plasma conditions. Results indicate that plasma treatment significantly enhances germination rates and seedling growth relative to untreated controls. Notably, plasma exposure alters seed surface morphology and chemistry, increasing roughness, porosity, and hydrophilicity due to the formation of new polar functional groups. The highest germination rate (a 54.84 % increase) and germination index (a 40.11 % increase) were observed at the lowest voltage and shortest duration, whereas higher voltages and prolonged exposure reduced germination, likely due to oxidative stress. Among the tested gas environments, air plasma was most effective in enhancing water uptake and electrical conductivity, while oxygen plasma resulted in the highest germination index and marked improvements in root and shoot length. Conversely, carbon dioxide plasma treatment exhibited inhibitory effects on both germination and subsequent growth metrics. The results highlight the potential of DBD plasma technology to enhance agricultural productivity by optimizing seed germination and early growth. The study emphasizes the importance of precise parameter tuning, particularly gas composition and plasma exposure conditions, to maximize benefits while minimizing adverse effects, offering a refined approach to seed priming in agricultural practices.
本研究利用介质阻挡放电(DBD)等离子体探索气体成分和电场调制对甜菜种子萌发的协同效应。该研究最初聚焦于空气等离子体暴露对萌发参数的影响,同时改变电压和处理持续时间。随后,该研究考察了在最佳空气等离子体条件下不同气体成分(氩气、氮气、氧气和二氧化碳)如何影响萌发结果。结果表明,与未处理的对照相比,等离子体处理显著提高了萌发率和幼苗生长。值得注意的是,等离子体暴露改变了种子表面形态和化学性质,由于新的极性官能团的形成,增加了粗糙度、孔隙率和亲水性。在最低电压和最短持续时间下观察到最高的萌发率(提高了54.84%)和萌发指数(提高了40.11%),而较高的电压和延长的暴露时间则降低了萌发率,这可能是由于氧化应激所致。在所测试的气体环境中,空气等离子体在提高水分吸收和电导率方面最有效,而氧等离子体导致最高的萌发指数以及根和芽长度的显著改善。相反,二氧化碳等离子体处理对萌发和随后的生长指标均表现出抑制作用。结果突出了DBD等离子体技术通过优化种子萌发和早期生长来提高农业生产力的潜力。该研究强调了精确调整参数的重要性,特别是气体成分和等离子体暴露条件,以在将不利影响降至最低的同时最大化益处,为农业实践中的种子引发提供了一种精细的方法。