Mohayman Zakariya, Ahamed J U, Toma F T Z, Tresa M M, Hussain Kazi Md Amjad, Khan M N I
Department of Electrical & Electronic Engineering, University of Chittagong, Chittagong-4331, Bangladesh.
Experimental Physics Division, Atomic Energy Centre, Dhaka, Dhaka-1000, Bangladesh.
Heliyon. 2024 Jun 20;10(12):e33311. doi: 10.1016/j.heliyon.2024.e33311. eCollection 2024 Jun 30.
This research investigates the structural, morphological, and optical properties of Cadmium Selenide (CdSe) thin films deposited via the Chemical Bath Deposition (CBD) Technique, focusing on the impact of Iron (Fe) doping. Using Cadmium Chloride (CdCl) and Ferrous chloride (FeCl) as precursor materials, the research investigates how Fe doping affects the structural and photoelectric characteristics of the films. Employing various characterization methods including X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), and UV-Vis NIR spectroscopy, the study provides a comprehensive analysis of the films. XRD analysis confirms the formation of a cubic structure with a predominant orientation along the (111) plane, consistent with XRD peaks. Additionally, XRD data reveals the degradation of thin films post-annealing. Crystalline size and strain are determined using the Debye-Scherrer and Wilson formulae, while lattice constant and Size-strain plots are derived from X-ray line broadening. The average crystallite size ranges from 12 to 21 nm. Optical band gaps are found to be 2.25 eV, 2.91 eV, 2.87 eV, and 2.85 eV for the samples. Interestingly, a decrease in crystal size with increasing doping concentration correlates with a reduction in bandgap. This investigation offers valuable insights into the fabrication and characterization of CdSe thin films, particularly highlighting the impact of Fe doping on their structural and optical properties. Overall, this study provides valuable insights into the fabrication and characterization of CdSe thin films, emphasizing the importance of precise doping control for tailoring material properties and advancing their applications in photovoltaic and optoelectronic devices.
本研究通过化学浴沉积(CBD)技术研究了硒化镉(CdSe)薄膜的结构、形态和光学性质,重点关注铁(Fe)掺杂的影响。以氯化镉(CdCl)和氯化亚铁(FeCl)作为前驱体材料,该研究探究了铁掺杂如何影响薄膜的结构和光电特性。采用包括X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)和紫外-可见-近红外光谱等多种表征方法,该研究对薄膜进行了全面分析。XRD分析证实形成了沿(111)面具有主要取向的立方结构,与XRD峰一致。此外,XRD数据揭示了退火后薄膜的降解情况。使用德拜-谢乐公式和威尔逊公式确定晶体尺寸和应变,而晶格常数和尺寸-应变图则由X射线线宽得出。平均微晶尺寸范围为12至21纳米。发现样品的光学带隙分别为2.25电子伏特、2.91电子伏特、2.87电子伏特和2.85电子伏特。有趣的是,随着掺杂浓度的增加晶体尺寸减小与带隙减小相关。这项研究为CdSe薄膜的制备和表征提供了有价值的见解,尤其突出了铁掺杂对其结构和光学性质的影响。总体而言,本研究为CdSe薄膜的制备和表征提供了有价值的见解,强调了精确控制掺杂对于调整材料性能以及推动其在光伏和光电器件中的应用的重要性。