Suppr超能文献

用于癌症研究的实现定量生物发光断层扫描的自监督混合神经网络。

Self-supervised hybrid neural network to achieve quantitative bioluminescence tomography for cancer research.

作者信息

Deng Beichuan, Tong Zhishen, Xu Xiangkun, Dehghani Hamid, Wang Ken Kang-Hsin

机构信息

Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas, USA.

School of Computer Science, University of Birmingham, Edgbaston, Birmingham, UK.

出版信息

Biomed Opt Express. 2024 Oct 7;15(11):6211-6227. doi: 10.1364/BOE.531573. eCollection 2024 Nov 1.

Abstract

Bioluminescence tomography (BLT) improves upon commonly-used 2D bioluminescence imaging by reconstructing 3D distributions of bioluminescence activity within biological tissue, allowing tumor localization and volume estimation-critical for cancer therapy development. Conventional model-based BLT is computationally challenging due to the ill-posed nature of the problem and data noise. We introduce a self-supervised hybrid neural network (SHyNN) that integrates the strengths of both conventional model-based methods and machine learning (ML) techniques to address these challenges. The network structure and converging path of SHyNN are designed to mitigate the effects of ill-posedness for achieving accurate and robust solutions. Through simulated and in vivo data on different disease sites, it is demonstrated to outperform the conventional reconstruction approach, particularly under high noise, in tumor localization, volume estimation, and multi-tumor differentiation, highlighting the potential towards quantitative BLT for cancer research.

摘要

生物发光断层扫描(BLT)通过重建生物组织内生物发光活性的三维分布,改进了常用的二维生物发光成像技术,可实现肿瘤定位和体积估计,这对癌症治疗的发展至关重要。由于问题的不适定性和数据噪声,传统的基于模型的BLT在计算上具有挑战性。我们引入了一种自监督混合神经网络(SHyNN),它整合了传统基于模型的方法和机器学习(ML)技术的优势,以应对这些挑战。SHyNN的网络结构和收敛路径旨在减轻不适定性的影响,以实现准确和稳健的解决方案。通过在不同疾病部位的模拟数据和体内数据表明,它在肿瘤定位、体积估计和多肿瘤鉴别方面优于传统重建方法,特别是在高噪声情况下,凸显了其在癌症研究中进行定量BLT的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52a6/11563333/584fb78cf00f/boe-15-11-6211-g001.jpg

相似文献

1
Self-supervised hybrid neural network to achieve quantitative bioluminescence tomography for cancer research.
Biomed Opt Express. 2024 Oct 7;15(11):6211-6227. doi: 10.1364/BOE.531573. eCollection 2024 Nov 1.
2
Characterization of a commercial bioluminescence tomography-guided system for pre-clinical radiation research.
Med Phys. 2023 Oct;50(10):6433-6453. doi: 10.1002/mp.16669. Epub 2023 Aug 26.
4
A Graph-guided Hybrid Regularization Method For Bioluminescence Tomography.
Comput Methods Programs Biomed. 2023 Mar;230:107329. doi: 10.1016/j.cmpb.2022.107329. Epub 2022 Dec 30.
6
Multi-atlas registration and adaptive hexahedral voxel discretization for fast bioluminescence tomography.
Biomed Opt Express. 2016 Mar 29;7(4):1549-60. doi: 10.1364/BOE.7.001549. eCollection 2016 Apr 1.
7
Adaptive Grouping Block Sparse Bayesian Learning Method for Accurate and Robust Reconstruction in Bioluminescence Tomography.
IEEE Trans Biomed Eng. 2021 Nov;68(11):3388-3398. doi: 10.1109/TBME.2021.3071823. Epub 2021 Oct 19.
8
Bioluminescence Tomography Based on One-Dimensional Convolutional Neural Networks.
Front Oncol. 2021 Oct 18;11:760689. doi: 10.3389/fonc.2021.760689. eCollection 2021.
9
Three-dimensional bioluminescence tomography based on Bayesian approach.
Opt Express. 2009 Sep 14;17(19):16834-48. doi: 10.1364/OE.17.016834.
10
Differential evolution approach for regularized bioluminescence tomography.
IEEE Trans Biomed Eng. 2010 Sep;57(9):2229-38. doi: 10.1109/TBME.2010.2041452. Epub 2010 Feb 17.

本文引用的文献

1
bioluminescence tomography-guided system for pancreatic cancer radiotherapy research.
Biomed Opt Express. 2024 Jul 9;15(8):4525-4539. doi: 10.1364/BOE.523916. eCollection 2024 Aug 1.
2
Characterization of a commercial bioluminescence tomography-guided system for pre-clinical radiation research.
Med Phys. 2023 Oct;50(10):6433-6453. doi: 10.1002/mp.16669. Epub 2023 Aug 26.
5
Quantitative molecular bioluminescence tomography.
J Biomed Opt. 2022 Jun;27(6). doi: 10.1117/1.JBO.27.6.066004.
6
Self-Training Strategy Based on Finite Element Method for Adaptive Bioluminescence Tomography Reconstruction.
IEEE Trans Med Imaging. 2022 Oct;41(10):2629-2643. doi: 10.1109/TMI.2022.3167809. Epub 2022 Sep 30.
7
Deep-learning based image reconstruction for MRI-guided near-infrared spectral tomography.
Optica. 2022 Mar 20;9(3):264-267. doi: 10.1364/optica.446576. Epub 2022 Feb 24.
8
Deep learning in macroscopic diffuse optical imaging.
J Biomed Opt. 2022 Feb;27(2). doi: 10.1117/1.JBO.27.2.020901.
9
Far-field super-resolution ghost imaging with a deep neural network constraint.
Light Sci Appl. 2022 Jan 1;11(1):1. doi: 10.1038/s41377-021-00680-w.
10
Quantitative Bioluminescence Tomography for In Vivo Volumetric-Guided Radiotherapy.
Methods Mol Biol. 2022;2393:701-731. doi: 10.1007/978-1-0716-1803-5_38.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验