Suppr超能文献

跨模型和尺度的公共交通:以慕尼黑网络为例

Public transport across models and scales: A case study of the Munich network.

作者信息

Mölter Jan, Ji Joanna, Lienkamp Benedikt, Zhang Qin, Moreno Ana T, Schiffer Maximilian, Moeckel Rolf, Kuehn Christian

机构信息

Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstraße 3, Garching bei München, 85748  Germany.

Department of Mobility Systems Engineering, School of Engineering and Design, Technical University of Munich, Arcisstraße 21, Munich 80333, Germany.

出版信息

PNAS Nexus. 2024 Oct 31;3(11):pgae489. doi: 10.1093/pnasnexus/pgae489. eCollection 2024 Nov.

Abstract

The use of public transport systems is a striking example of complex human behavior. Modeling, planning, and managing public transport is a major future challenge considering the drastically accelerated population growth in many urban areas. The desire to design sustainable cities that can cope with a dynamically increasing demand requires models for transport networks since we are not able to perform real-life experiments before constructing additional infrastructure. Yet, there is a fundamental challenge in the modeling process: we have to understand which basic principles apply to the design of transit networks. In this work, we are going to compare three scientific methods to understand human behavior in public transport modeling: agent-based models, centralized optimization-based models, and minimal physics-based models. As a case study, we focus on the transport network in Munich, Germany. We show that there are certain universal macroscopic emergent features of public transport that arise regardless of the model chosen. In particular, we can obtain with minimal basic assumptions a common and robust distribution for the individual passenger in-vehicle time as well as for several other distributions. Yet, there are other more microscopic features that differ between the individual and centralized organization and/or that cannot be reproduced by a minimal nonlocal random-walk type model. Finally, we cross-validate our results with observed public transport data. In summary, our results provide a key understanding of the basic assumptions that have to underlie transport modeling for human behavior in future sustainable cities.

摘要

公共交通系统的使用是复杂人类行为的一个显著例子。考虑到许多城市地区人口增长急剧加速,对公共交通进行建模、规划和管理是未来的一项重大挑战。设计能够应对动态增长需求的可持续城市的愿望需要交通网络模型,因为在建设额外基础设施之前我们无法进行实际实验。然而,建模过程中存在一个根本挑战:我们必须了解哪些基本原理适用于公交网络的设计。在这项工作中,我们将比较三种科学方法来理解公共交通建模中的人类行为:基于代理的模型、基于集中优化的模型和基于最小物理的模型。作为一个案例研究,我们重点关注德国慕尼黑的交通网络。我们表明,无论选择何种模型,公共交通都存在某些普遍的宏观涌现特征。特别是,我们可以通过最少的基本假设获得个体乘客车内时间的常见且稳健的分布以及其他几种分布。然而,个体组织和集中组织之间还存在其他更微观的特征差异,并且/或者这些特征无法由最小的非局部随机游走类型模型再现。最后,我们用观测到的公共交通数据对我们的结果进行交叉验证。总之,我们的结果为未来可持续城市中人类行为交通建模必须基于的基本假设提供了关键理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d72a/11565408/35656c50a41f/pgae489f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验