Suppr超能文献

混合交通中多式联运按需自动驾驶出行系统的路径规划与再平衡

Routing and Rebalancing Intermodal Autonomous Mobility-on-Demand Systems in Mixed Traffic.

作者信息

Wollenstein-Betech Salomón, Salazar Mauro, Houshmand Arian, Pavone Marco, Paschalidis Ioannis Ch, Cassandras Christos G

机构信息

The authors are with the Division of Systems Engineering and the Center for Information and Systems Engineering, Boston University, Boston, MA 02215 USA.

The author is with the department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, NL.

出版信息

IEEE trans Intell Transp Syst. 2022 Aug;23(8):12263-12275. doi: 10.1109/tits.2021.3112106. Epub 2021 Sep 20.

Abstract

This paper studies congestion-aware route-planning policies for intermodal Autonomous Mobility-on-Demand (AMoD) systems, whereby a fleet of autonomous vehicles provides on-demand mobility jointly with public transit under mixed traffic conditions (consisting of AMoD and private vehicles). First, we devise a network flow model to jointly optimize the AMoD routing and rebalancing strategies in a congestion-aware fashion by accounting for the endogenous impact of AMoD flows on travel time. Second, we capture the effect of exogenous traffic stemming from private vehicles adapting to the AMoD flows in a user-centric fashion by leveraging a sequential approach. Since our results are in terms of link flows, we then provide algorithms to retrieve the explicit recommended routes to users. Finally, we showcase our framework with two case-studies considering the transportation sub-networks in Eastern Massachusetts and New York City, respectively. Our results suggest that for high levels of demand, pure AMoD travel can be detrimental due to the additional traffic stemming from its rebalancing flows. However, blending AMoD with public transit, walking and micromobility options can significantly improve the overall system performance by leveraging the high-throughput of public transit combined with the flexibility of walking and micromobility.

摘要

本文研究了多模式按需自动驾驶(AMoD)系统中考虑拥堵的路线规划策略,即自动驾驶车辆车队在混合交通条件下(包括AMoD车辆和私家车)与公共交通联合提供按需出行服务。首先,我们设计了一个网络流模型,通过考虑AMoD流量对出行时间的内生影响,以一种考虑拥堵的方式联合优化AMoD的路由和再平衡策略。其次,我们利用一种顺序方法,以用户为中心捕捉私家车适应AMoD流量所产生的外生交通影响。由于我们的结果是以链路流量表示的,然后我们提供算法来为用户检索明确的推荐路线。最后,我们分别以马萨诸塞州东部和纽约市的交通子网为例进行了两个案例研究,展示了我们的框架。我们的结果表明,对于高需求水平,由于再平衡流量产生的额外交通,纯AMoD出行可能是有害的。然而,将AMoD与公共交通、步行和微出行选项相结合,可以通过利用公共交通的高吞吐量以及步行和微出行的灵活性,显著提高整体系统性能。

相似文献

2
On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment.通过动态行程-车辆分配实现按需大容量拼车服务。
Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):462-467. doi: 10.1073/pnas.1611675114. Epub 2017 Jan 3.
8
A link model approach to identify congestion hotspots.一种用于识别拥堵热点的链路模型方法。
R Soc Open Sci. 2022 Oct 26;9(10):220894. doi: 10.1098/rsos.220894. eCollection 2022 Oct.

本文引用的文献

1
On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment.通过动态行程-车辆分配实现按需大容量拼车服务。
Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):462-467. doi: 10.1073/pnas.1611675114. Epub 2017 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验