Suppr超能文献

基于磁共振成像的影像组学在预测直肠癌中Ki-67、p53和表皮生长因子受体的表达中的应用

Magnetic resonance imaging-based radiomics in predicting the expression of Ki-67, p53, and epidermal growth factor receptor in rectal cancer.

作者信息

Li Qiying, Liu Jinkai, Li Weneng, Qiu Mingzhu, Zhuo Xiaohua, You Qikui, Qiu Shaohua, Lin Qi, Liu Yi

机构信息

Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China.

Liaoning Cancer Hospital and Institute, Shenyang, China.

出版信息

J Gastrointest Oncol. 2024 Oct 31;15(5):2088-2099. doi: 10.21037/jgo-24-220. Epub 2024 Oct 29.

Abstract

BACKGROUND

The preoperative evaluation of the expression levels of Ki-67, p53, and epidermal growth factor receptor (EGFR) based on magnetic resonance imaging (MRI) of rectal cancer is necessary to facilitate individualized therapy. This study aimed to develop and validate radiomics models for the evaluation of the expression levels of Ki-67, p53, and EGFR of rectal cancer from preoperative MRI.

METHODS

In this retrospective study, 124 patients (38 in the test group and 86 in the training group) with rectal cancer who underwent preoperative MRI and postoperative Ki-67, p53 and EGFR assay were included in Longyan First Affiliated Hospital of Fujian Medical University from June 2015 to October 2019. A total of 796 radiomics features were acquired from both diffusion-weighted imaging (DWI) and T2-weighted imaging (T2WI). Least absolute shrinkage and selection operator (LASSO) and the minimum redundancy maximum relevance (mRMR) were used to select the most predictive texture features, and then the radiomics score (Rad-score) models were derived to evaluate Ki-67, p53, and EGFR expression status based on the radiomics signature. The receiver operating characteristic (ROC) was used to assess the model's performance, and the reliability was verified via accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).

RESULTS

The Rad-score evaluation of Ki-67 expression status yielded area under the curve (AUC) values of 0.91 [95% confidence interval (CI): 0.87-0.95] and 0.81 (95% CI: 0.66-0.96) in the training and test groups. The evaluation of p53 expression produced AUC values of 0.82 (95% CI: 0.77-0.88) and 0.80 (95% CI: 0.65-0.96). For evaluating EGFR expression status in both training and test groups, the AUC values were 0.86 (95% CI: 0.81-0.91) and 0.76 (95% CI: 0.58-0.93), respectively. While Rad-score of Ki-67 expression status in the training group obtained the top accuracy, sensitivity, specificity, and PPV with values of 0.85, 0.80, 0.92, and 0.93.

CONCLUSIONS

Preoperative MRI-based radiomics analysis has the ability to noninvasively assess the postoperative Ki-67, p53, and EGFR of rectal cancer.

摘要

背景

基于直肠癌磁共振成像(MRI)对Ki-67、p53和表皮生长因子受体(EGFR)表达水平进行术前评估,对于促进个体化治疗很有必要。本研究旨在开发并验证基于术前MRI评估直肠癌Ki-67、p53和EGFR表达水平的放射组学模型。

方法

在这项回顾性研究中,纳入了2015年6月至2019年10月在福建医科大学附属龙岩第一医院接受术前MRI检查及术后Ki-67、p53和EGFR检测的124例直肠癌患者(试验组38例,训练组86例)。从扩散加权成像(DWI)和T2加权成像(T2WI)中总共提取了796个放射组学特征。采用最小绝对收缩和选择算子(LASSO)及最小冗余最大相关(mRMR)方法选择最具预测性的纹理特征,然后基于放射组学特征得出放射组学评分(Rad-score)模型,以评估Ki-67、p53和EGFR的表达状态。采用受试者操作特征(ROC)曲线评估模型性能,并通过准确性、敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)验证其可靠性。

结果

训练组和试验组中,Ki-67表达状态的Rad-score评估曲线下面积(AUC)值分别为0.91[95%置信区间(CI):0.87-0.95]和0.81(95%CI:0.66-0.96)。p53表达评估的AUC值分别为0.82(95%CI:0.77-0.88)和0.80(95%CI:0.65-0.96)。在训练组和试验组中评估EGFR表达状态时,AUC值分别为0.86(95%CI:0.81-0.91)和0.76(95%CI:0.58-0.93)。训练组中Ki-67表达状态的Rad-score在准确性、敏感性、特异性和PPV方面表现最佳,分别为0.85、0.80、0.92和0.93。

结论

基于术前MRI的放射组学分析能够无创评估直肠癌术后的Ki-67、p53和EGFR。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/791a/11565121/6e1d647bdb46/jgo-15-05-2088-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验