Suppr超能文献

基于磁共振成像影像组学预测局部晚期直肠癌患者新辅助放化疗后严重炎症反应

Magnetic resonance imaging radiomics-based prediction of severe inflammatory response in locally advanced rectal cancer patients after neoadjuvant radiochemotherapy.

作者信息

Chen Li, Zhu Wenchao, Zhang Wei, Chen Engeng, Zhou Wei

机构信息

Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.

Department of Radiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.

出版信息

Langenbecks Arch Surg. 2024 Jul 17;409(1):218. doi: 10.1007/s00423-024-03416-7.

Abstract

PURPOSE

To predict severe inflammatory response after neoadjuvant radiochemotherapy in locally advanced rectal cancer (RC) patients using magnetic resonance imaging (MRI) radiomics models.

METHODS

This retrospective study included patients who underwent radical surgery for RC cancer after neoadjuvant radiochemotherapy between July 2017 and December 2019 at XXX Hospital. MRI radiomics features were extracted from T2WI images before (pre-nRCT-RF) and after (post-nRCT-RF) neoadjuvant radiochemotherapy, and the variation of radiomics features before and after neoadjuvant radiochemotherapy (delta-RF) were calculated. Eight, eight, and five most relevant features were identified for pre-nRCT-RF, post-nRCT-RF, and delta-RF, respectively.

RESULTS

Eighty-six patients were included and randomized 3:1 to the training and test set (n = 65 and n = 21, respectively). The prediction model based on delta-RF had areas under the curve (AUCs) of 0.80 and 0.85 in the training and test set, respectively. A higher rate of difficult operations was observed in patients with severe inflammation (65.5% vs. 42.9%, P = 0.045).

CONCLUSION

The prediction model based on MRI delta-RF may be a useful tool for predicting severe inflammatory response after neoadjuvant radiochemotherapy in locally advanced RC patients.

摘要

目的

使用磁共振成像(MRI)影像组学模型预测局部晚期直肠癌(RC)患者新辅助放化疗后的严重炎症反应。

方法

这项回顾性研究纳入了2017年7月至2019年12月期间在XXX医院接受新辅助放化疗后行RC根治性手术的患者。从新辅助放化疗前(nRCT-RF前)和后(nRCT-RF后)的T2WI图像中提取MRI影像组学特征,并计算新辅助放化疗前后影像组学特征的变化(delta-RF)。分别为nRCT-RF前、nRCT-RF后和delta-RF确定了8个、8个和5个最相关的特征。

结果

纳入86例患者,按3:1随机分为训练组和测试组(分别为n = 65和n = 21)。基于delta-RF的预测模型在训练组和测试组中的曲线下面积(AUC)分别为0.80和0.85。严重炎症患者的困难手术率更高(65.5%对42.9%,P = 0.045)。

结论

基于MRI delta-RF的预测模型可能是预测局部晚期RC患者新辅助放化疗后严重炎症反应的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/022a/11255083/f52293aabe98/423_2024_3416_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验