School of Medical Imageology, Wannan Medical College, Wuhu, 241002, Anhui, China.
Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui, 233030, China.
BMC Gastroenterol. 2024 Aug 5;24(1):247. doi: 10.1186/s12876-024-03316-6.
This study evaluates the efficacy of integrating MRI deep transfer learning, radiomic signatures, and clinical variables to accurately preoperatively differentiate between stage T2 and T3 rectal cancer.
We included 361 patients with pathologically confirmed stage T2 or T3 rectal cancer, divided into a training set (252 patients) and a test set (109 patients) at a 7:3 ratio. The study utilized features derived from deep transfer learning and radiomics, with Spearman rank correlation and the Least Absolute Shrinkage and Selection Operator (LASSO) regression techniques to reduce feature redundancy. Predictive models were developed using Logistic Regression (LR), Random Forest (RF), Decision Tree (DT), and Support Vector Machine (SVM), selecting the best-performing model for a comprehensive predictive framework incorporating clinical data.
After removing redundant features, 24 key features were identified. In the training set, the area under the curve (AUC)values for LR, RF, DT, and SVM were 0.867, 0.834, 0.900, and 0.944, respectively; in the test set, they were 0.847, 0.803, 0.842, and 0.910, respectively. The combined model, using SVM and clinical variables, achieved AUCs of 0.946 in the trainingset and 0.920 in the test set.
The study confirms the utility of a combined model of MRI deep transfer learning, radiomic features, and clinical factors for preoperative classification of stage T2 vs. T3 rectal cancer, offering significant technological support for precise diagnosis and potential clinical application.
本研究旨在评估整合 MRI 深度迁移学习、放射组学特征和临床变量以准确术前区分 T2 期和 T3 期直肠癌的疗效。
我们纳入了 361 例经病理证实的 T2 或 T3 期直肠癌患者,按照 7:3 的比例分为训练集(252 例)和测试集(109 例)。研究利用深度迁移学习和放射组学提取的特征,采用 Spearman 秩相关和最小绝对收缩和选择算子(LASSO)回归技术来减少特征冗余。使用 Logistic 回归(LR)、随机森林(RF)、决策树(DT)和支持向量机(SVM)构建预测模型,选择性能最佳的模型纳入包含临床数据的综合预测框架。
在去除冗余特征后,确定了 24 个关键特征。在训练集中,LR、RF、DT 和 SVM 的曲线下面积(AUC)值分别为 0.867、0.834、0.900 和 0.944;在测试集中,分别为 0.847、0.803、0.842 和 0.910。使用 SVM 和临床变量的联合模型在训练集中的 AUC 为 0.946,在测试集中为 0.920。
本研究证实了 MRI 深度迁移学习、放射组学特征和临床因素联合模型在术前区分 T2 期和 T3 期直肠癌的应用价值,为精准诊断提供了重要技术支持,具有潜在的临床应用前景。