Suppr超能文献

整合基因表达综合数据库、孟德尔随机化和分子对接以确定HLA-C作为牙周炎的潜在治疗靶点

Integrating GEO Database, Mendelian Randomization, and Molecular Docking to Identify HLA-C as a Potential Therapeutic Target for Periodontitis.

作者信息

Shi ChengJi, Ou Xinyi, Huang LiJuan, Lei XiaoXu, Xu ShuHao, Ou Menglu, Li Wei, Zhao Xi

机构信息

Department of Stomatology, The People's Hospital of Deyang City, Deyang, Sichuan, China.

Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.

出版信息

Mediators Inflamm. 2025 Jul 14;2025:9163431. doi: 10.1155/mi/9163431. eCollection 2025.

Abstract

Periodontitis is a chronic inflammatory disease that leads to the destruction of periodontal tissues, ultimately resulting in tooth loss. Current treatments primarily focus on mitigating inflammation and alleviating symptoms, but they often lack specificity. This study aims to explore the molecular mechanisms of periodontitis using gene expression databases (GEOs) and bioinformatics methods, combined with Mendelian randomization (MR) analysis, to identify key therapeutic targets. This study analyzed GSE10334 microarray data to identify differentially expressed genes (DEGs) in periodontitis using R. Weighted gene co-expression network analysis (WGCNA) identified key gene modules and enrichment analysis revealed functional pathways. Immune infiltration was assessed with CIBERSORT and MR explored human leukocyte antigen C's (HLA-C's) role. Single-cell analysis using Seurat identified cell types and CellChat mapped cell communication. Molecular docking (MD) and molecular dynamic simulations were used to validate the interaction between the hub target genes and the potential drug. Differential expression analysis identified 167 DEGs in periodontitis. WGCNA revealed a strong association with the blue module. MR analysis confirmed HLA-C as a risk factor. Single-cell RNA sequencing (scRNA-seq) showed elevated plasmablasts and HLA-C expression. MD and molecular dynamic simulation analysis identified metronidazole as a potential drug with stable binding to HLA-C, forming a stable complex with no significant conformational changes during the 100 ns simulation period. This study identifies HLA-C as a potential therapeutic target for periodontitis, with MD studies and molecular dynamic simulations highlighting metronidazole as a potential treatment. These findings provide new insights into periodontitis pathogenesis and potential therapeutic strategies.

摘要

牙周炎是一种慢性炎症性疾病,会导致牙周组织破坏,最终导致牙齿脱落。目前的治疗主要集中在减轻炎症和缓解症状,但往往缺乏特异性。本研究旨在利用基因表达数据库(GEO)和生物信息学方法,结合孟德尔随机化(MR)分析,探索牙周炎的分子机制,以确定关键治疗靶点。本研究分析了GSE10334芯片数据,使用R软件识别牙周炎中差异表达基因(DEG)。加权基因共表达网络分析(WGCNA)确定了关键基因模块,富集分析揭示了功能通路。用CIBERSORT评估免疫浸润,MR分析探讨人类白细胞抗原C(HLA-C)的作用。使用Seurat进行单细胞分析确定细胞类型,CellChat绘制细胞通讯图。分子对接(MD)和分子动力学模拟用于验证枢纽靶基因与潜在药物之间的相互作用。差异表达分析在牙周炎中鉴定出167个DEG。WGCNA显示与蓝色模块有很强的关联。MR分析证实HLA-C是一个危险因素。单细胞RNA测序(scRNA-seq)显示浆母细胞和HLA-C表达升高。MD和分子动力学模拟分析确定甲硝唑是一种与HLA-C结合稳定的潜在药物,在100纳秒模拟期内形成稳定复合物,无明显构象变化。本研究确定HLA-C是牙周炎的潜在治疗靶点,MD研究和分子动力学模拟突出了甲硝唑作为一种潜在治疗方法。这些发现为牙周炎发病机制和潜在治疗策略提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34c4/12279435/0ea195dad5e4/MI2025-9163431.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验