Suppr超能文献

通过基于回归的机器学习模型研究情绪反应及其对注意力-情绪交互神经回路的影响。

Emotional reactivity and its impact on neural circuitry for attention-emotion interaction through regression-based machine learning model.

作者信息

Prasad Raghavendra, Tarai Shashikanta, Bit Arindam

机构信息

Department of Biomedical Engineering, NIT Raipur, Raipur, India.

Department of Humanities and Social Sciences, NIT Raipur, Raipur, India.

出版信息

Cogn Neurodyn. 2024 Oct;18(5):2551-2573. doi: 10.1007/s11571-024-10106-z. Epub 2024 Apr 16.

Abstract

UNLABELLED

Attentional paradigm can have a significant influence on the processing and experience of positive and negative emotions. Attentional mechanism refers to the tendency to selectively attend to a particular stimulus while ignoring others. In the context of emotions, individuals may exhibit attentional biases towards either positive or negative emotional stimuli. By directing attention towards a specific stimulus, individuals can modulate their emotional responses. When attention is directed towards negative or threatening stimuli, it can intensify negative emotions such as fear, sadness, anger and anxiety. Conversely, directing attention away from negative stimuli can reduce emotional reactivity and promote emotional regulation. Similarly, paying attention to positive stimuli can amplify positive emotions and facilitate positive emotional experiences. Attentional paradigms are also responsible for cognitive appraisal of emotional stimuli. The allocation of attention can shape how emotional stimuli are evaluated and categorized, influencing the subsequent emotional response. Since the relationship between attention and emotions is complex and can vary across individuals and contexts, it is important to understand the underlying cognitive neural dynamics of the same. Custom rank allocation model (CRAM) was used to decode the underlying neural dynamics of cognitive and emotional resource sharing through the non-significant EEG channels. During the main effect of global-local (GL), CRAM ranks and scores indicated that the EEG channels C4, PZ, OZ, and P4 were found to be the most non-significant channels. Similarly, CRAM ranks and scores of the interaction effects between global-local and positive emotion-negative emotion and the interaction effects between global-local and frequent-deviant-equal indicated midline central EEG channels CZ, PZ, FZ and OZ to be the main contributor of the cognitive and emotional resources to others. Understanding the dynamics of attention-emotion conflicts with reference to significant and non-significant channels is important to gain insights into the complex computational interplay between attention and emotion, leading to a deeper understanding of human cognition and emotion regulation.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s11571-024-10106-z.

摘要

未标注

注意范式会对积极和消极情绪的加工与体验产生重大影响。注意机制是指选择性地关注特定刺激而忽略其他刺激的倾向。在情绪背景下,个体可能对积极或消极情绪刺激表现出注意偏向。通过将注意力导向特定刺激,个体可以调节自己的情绪反应。当注意力指向消极或威胁性刺激时,会加剧恐惧、悲伤、愤怒和焦虑等消极情绪。相反,将注意力从消极刺激上转移开可以降低情绪反应性并促进情绪调节。同样,关注积极刺激可以增强积极情绪并促进积极的情绪体验。注意范式还负责对情绪刺激进行认知评估。注意力的分配可以塑造情绪刺激的评估和分类方式,影响随后的情绪反应。由于注意与情绪之间的关系复杂,且会因个体和情境而异,因此了解其潜在的认知神经动力学很重要。使用自定义排名分配模型(CRAM)通过无显著意义的脑电图通道解码认知和情绪资源共享的潜在神经动力学。在全局-局部(GL)的主效应期间,CRAM排名和分数表明脑电图通道C4、PZ、OZ和P4是最无显著意义的通道。同样,全局-局部与积极情绪-消极情绪之间的交互效应以及全局-局部与频繁-偏差-相等之间的交互效应的CRAM排名和分数表明,中线中央脑电图通道CZ、PZ、FZ和OZ是向其他通道提供认知和情绪资源的主要贡献者。参照显著和无显著意义的通道来理解注意-情绪冲突的动态对于深入了解注意与情绪之间复杂的计算相互作用很重要,从而能更深入地理解人类认知和情绪调节。

补充信息

在线版本包含可在10.1007/s11571-024-10106-z获取的补充材料。

相似文献

引用本文的文献

本文引用的文献

9
Neurobiology of loneliness: a systematic review.孤独的神经生物学:系统综述。
Neuropsychopharmacology. 2021 Oct;46(11):1873-1887. doi: 10.1038/s41386-021-01058-7. Epub 2021 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验