Suppr超能文献

基于语音任务的神经发育障碍儿童脑电图和语音信号分析:一项多模态研究。

Vocal tasks-based EEG and speech signal analysis in children with neurodevelopmental disorders: a multimodal investigation.

作者信息

Sharma Yogesh, Singh Bikesh Kumar, Dhurandhar Sangeeta

机构信息

Department of Biomedical Engineering, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010 India.

Srishti Special School, Raipur, Chhattisgarh 492001 India.

出版信息

Cogn Neurodyn. 2024 Oct;18(5):2387-2403. doi: 10.1007/s11571-024-10096-y. Epub 2024 Mar 20.

Abstract

Neurodevelopmental disorders (NDs) often hamper multiple functional prints of a child brain. Despite several studies on their neural and speech responses, multimodal researches on NDs are extremely rare. The present work examined the electroencephalography (EEG) and speech signals of the ND and control children, who performed "Hindi language" vocal tasks (V) of seven different categories, viz. 'vowel', 'consonant', 'one syllable', 'multi-syllable', 'compound', 'complex', and 'sentence' (V1-V7). Statistical testing of EEG parameters showed substantially high beta and gamma band energies in frontal, central, and temporal head sites of NDs for tasks V1-V5 and in parietal too for V6. For the 'sentence' task (V7), the NDs yielded significantly high theta and low alpha energies in the parietal area. These findings imply that even performing a general context-based task exerts a heavy cognitive loading in neurodevelopmental subjects. They also exhibited poor auditory comprehension while executing a long phrasing. Further, the speech signal analysis manifested significantly high amplitude (for V1-V7) and frequency (for V3-V7) perturbations in the voices of ND children. Moreover, the classification of subjects as ND or control was done via EEG and speech features. We attained 100% accuracy, precision, and F-measure using EEG features of all tasks, and using speech features of the 'complex' task. Jointly, the 'complex' task transpired as the best vocal stimuli among V1-V7 for characterizing ND brains. Meanwhile, we also inspected inter-relations between EEG energies and speech attributes of the ND group. Our work, thus, represents a unique multimodal layout to explore the distinctiveness of neuro-impaired children.

摘要

神经发育障碍(NDs)常常阻碍儿童大脑的多种功能印记。尽管对其神经和言语反应进行了多项研究,但关于NDs的多模态研究极为罕见。本研究考察了患有神经发育障碍的儿童和对照组儿童的脑电图(EEG)及言语信号,这些儿童执行了七种不同类别的“印地语”发声任务(V),即“元音”“辅音”“单音节”“多音节”“复合词”“复杂词”和“句子”(V1 - V7)。对EEG参数的统计测试表明,在任务V1 - V5中,患有神经发育障碍的儿童在额叶、中央和颞叶头部区域的β和γ波段能量显著较高,在任务V6中顶叶区域也是如此。对于“句子”任务(V7),患有神经发育障碍的儿童在顶叶区域产生了显著较高的θ能量和较低的α能量。这些发现意味着,即使执行基于一般语境的任务,神经发育障碍患者也会承受沉重的认知负担。他们在执行长语句时听觉理解能力也较差。此外,言语信号分析显示,患有神经发育障碍的儿童的声音中,幅度(对于V1 - V7)和频率(对于V3 - V7)的扰动显著较高。此外,通过EEG和言语特征对受试者进行了ND或对照组分类。使用所有任务的EEG特征以及“复杂词”任务的言语特征,我们获得了100%的准确率、精确率和F值。综合来看,在V1 - V7中,“复杂词”任务是表征ND大脑的最佳发声刺激。同时,我们还考察了ND组EEG能量与言语属性之间的相互关系。因此,我们的研究代表了一种独特的多模态布局,用于探索神经受损儿童的独特性。

相似文献

2
Interventions for childhood apraxia of speech.儿童言语失用症的干预措施。
Cochrane Database Syst Rev. 2018 May 30;5(5):CD006278. doi: 10.1002/14651858.CD006278.pub3.

本文引用的文献

6
Disability Certification in Psychiatry.精神病学中的残疾鉴定
Indian J Psychiatry. 2022 Mar;64(Suppl 1):S185-S195. doi: 10.4103/indianjpsychiatry.indianjpsychiatry_717_21. Epub 2022 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验