Department of Biochemistry, Periyar University, Salem, India.
Bioinnov Solutions LLP, Research and Development Center, Salem, India.
J Biochem Mol Toxicol. 2024 Dec;38(12):e70058. doi: 10.1002/jbt.70058.
Glucolipotoxicity (GLT) has emerged as established mechanism in the progression of diabetes. Identifying compounds that mitigate GLT-induced deleterious effect on β-cells are considered important strategy to overcome diabetes. Hence, in the present study, astaxanthin-s-allyl cysteine (AST-SAC) diester was studied against GLT in β-cells. Mus musculus pancreatic β-cell line (βTC-tet) was treated with high glucose (25 mM; HG) and 95 μM palmitate (PA) for 24 h to induce GLT. AST-SAC at various concentrations (5, 10, and 15 μg/ml) were treated to understand the protective effect against HG + PA exposure in β-cells. Under HG + PA exposure conditions oxidative stress, deregulation of mTOR pathway and endoplasmic reticulum (ER) stress are witnessed. AST-SAC treatment eased oxidative stress, mitochondrial depolarization, DNA damage, calcium overload and accumulation of autophagosome against HG + PA exposure conditions thereby protected the cell viability of β-cells. AST-SAC maintained the level of proteins involved in mTOR pathway under HG + PA exposure conditions. Also, AST-SAC treatment has mitigated the increased expression of genes and proteins such as IRE1 and PERK involved in ER stress-mediated unfolded protein response (UPR) signaling pathways. In correspondence to it, the expression of genes involved in insulin secretion was preserved by AST-SAC. Due to these protective effects of AST-SAC the insulin secretion was well-maintained in β-cells under HG + PA exposure conditions. AST-SAC through normalizing antioxidant status and mTOR axis as well as preventing the harmful effect of ER-stress mediated UPR pathway has promoted the β-cell survival and insulin secretion against GLT. Simultaneously targeting oxidative stress/mTOR axis/ER stress is required to efficiently overcome GLT in β-cells.
糖脂毒性 (GLT) 已成为糖尿病进展的既定机制。寻找能够减轻 GLT 对β细胞产生有害影响的化合物被认为是克服糖尿病的重要策略。因此,在本研究中,研究了虾青素-s-烯丙基半胱氨酸 (AST-SAC) 二酯对β细胞中的 GLT 的作用。用高葡萄糖(25mM;HG)和 95μM 棕榈酸(PA)处理小鼠胰腺β细胞系(βTC-tet)24 小时以诱导 GLT。用不同浓度(5、10 和 15μg/ml)的 AST-SAC 处理以了解其对 HG+PA 暴露时β细胞的保护作用。在 HG+PA 暴露条件下,观察到氧化应激、mTOR 途径和内质网(ER)应激的失调。AST-SAC 处理减轻了氧化应激、线粒体去极化、DNA 损伤、钙超载和自噬体的积累,从而保护了β细胞的细胞活力。AST-SAC 维持了 HG+PA 暴露条件下参与 mTOR 途径的蛋白质水平。此外,AST-SAC 处理减轻了参与 ER 应激介导的未折叠蛋白反应(UPR)信号通路的基因和蛋白质如 IRE1 和 PERK 的表达增加。相应地,AST-SAC 维持了与胰岛素分泌相关的基因的表达。由于 AST-SAC 的这些保护作用,在 HG+PA 暴露条件下,β细胞中的胰岛素分泌得到很好的维持。AST-SAC 通过正常化抗氧化状态和 mTOR 轴以及防止 ER 应激介导的 UPR 途径的有害影响,促进了β细胞的存活和胰岛素分泌,从而对抗 GLT。同时针对氧化应激/mTOR 轴/ER 应激,需要有效地克服β细胞中的 GLT。