Zhang Hongmin, Zhang Haodong, Wang Fei, Nestler Britta
Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Pl. 1, 76344 Eggenstein-Leopoldshafen, Germany.
Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany.
J Chem Phys. 2024 Nov 21;161(19). doi: 10.1063/5.0232287.
Variations from equilibrium Young's angle, known as contact angle hysteresis (CAH), are frequently observed upon droplet deposition on a solid surface. This ubiquitous phenomenon indicates the presence of multiple local surface energy minima for the sessile droplet. Previous research primarily explains CAH via considering macroscopic roughness, such as topographical defects, which alter the effective interfacial energy between the fluid phase and the solid phase, thereby shifting the global surface energy minimum. One typical example is the classic Cassie-Baxter-Wenzel theory. Here, we propose an alternative microscopic mechanism that emphasizes the complexity of molecular rearrangements at the fluid-solid interface, treating their interfacial tensions as variables, which results in multiple local surface energy minima. Our theoretical framework demonstrates that CAH can occur even on chemically homogeneous and mechanically smooth-flat substrates, aligning with previously unexplained experimental observations. In addition, we explore the interplay between macroscopic and microscopic roughness in influencing CAH and clarify the contrasting wetting behaviors-the lotus effect and the rose petal effect-on hierarchical roughness from a thermodynamic perspective. This work provides valuable insights into surface tension determination by restoring the natural physical properties of interfaces and illuminates the multifaceted mechanisms underlying the everyday occurrences of CAH.
液滴沉积在固体表面时,常观察到与平衡杨氏角的偏差,即接触角滞后(CAH)。这种普遍存在的现象表明,固着液滴存在多个局部表面能最小值。以往的研究主要通过考虑宏观粗糙度(如地形缺陷)来解释CAH,这些缺陷会改变流体相和固相之间的有效界面能,从而使全局表面能最小值发生偏移。一个典型的例子是经典的卡西-巴克斯特-温泽尔理论。在此,我们提出一种替代的微观机制,该机制强调液固界面处分子重排的复杂性,将它们的界面张力视为变量,这会导致多个局部表面能最小值。我们的理论框架表明,即使在化学均匀且机械光滑平坦的基底上也会出现CAH,这与之前无法解释的实验观察结果一致。此外,我们探讨了宏观和微观粗糙度在影响CAH方面的相互作用,并从热力学角度阐明了分级粗糙度上对比鲜明的润湿行为——荷叶效应和玫瑰花瓣效应。这项工作通过恢复界面的自然物理性质,为表面张力的测定提供了有价值的见解,并阐明了CAH日常现象背后的多方面机制。