Ji Ziyu, Wolfson Julian
Division of Biostatistics & Health Data Science, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
Stat Med. 2024 Dec 30;43(30):5837-5848. doi: 10.1002/sim.10267. Epub 2024 Nov 18.
Increasingly during the past decade, researchers have sought to leverage auxiliary data for enhancing individualized inference. Many existing methods, such as multisource exchangeability models (MEM), have been developed to borrow information from multiple supplemental sources to support parameter inference in a primary source. MEM and its alternatives decide how much information to borrow based on the exchangeability of the primary and supplemental sources, where exchangeability is defined as equality of the target parameter. Other information that may also help determine the exchangeability of sources is ignored. In this article, we propose a generalized reinforced borrowing framework (RBF) leveraging auxiliary data for enhancing individualized inference using a distance-embedded prior which uses data not only about the target parameter but also uses different types of auxiliary information sources to "reinforce" inference on the target parameter. RBF improves inference with minimal additional computational burden. We demonstrate the application of RBF to a study investigating the impact of the COVID-19 pandemic on individual activity and transportation behaviors, where RBF achieves 20%-40% lower MSE compared with existing methods.
在过去十年中,研究人员越来越多地寻求利用辅助数据来加强个性化推断。已经开发了许多现有方法,如多源可交换性模型(MEM),以便从多个补充源借用信息,以支持主要源中的参数推断。MEM及其替代方法根据主要源和补充源的可交换性来决定借用多少信息,其中可交换性被定义为目标参数的相等性。其他可能有助于确定源的可交换性的信息被忽略了。在本文中,我们提出了一种广义强化借用框架(RBF),利用辅助数据,通过距离嵌入先验来加强个性化推断,该先验不仅使用关于目标参数的数据,还使用不同类型的辅助信息源来“强化”对目标参数的推断。RBF以最小的额外计算负担改进推断。我们展示了RBF在一项研究中的应用,该研究调查了COVID-19大流行对个人活动和交通行为的影响,其中与现有方法相比,RBF的均方误差降低了20%-40%。