Suppr超能文献

语音情感感知与音乐性——来自脑电图解码的见解

Vocal Emotion Perception and Musicality-Insights from EEG Decoding.

作者信息

Lehnen Johannes M, Schweinberger Stefan R, Nussbaum Christine

机构信息

Department of Clinical Psychology in Childhood and Adolescence, Friedrich Schiller University Jena, 07743 Jena, Germany.

Department for General Psychology and Cognitive Neuroscience, Friedrich Schiller University Jena, 07743 Jena, Germany.

出版信息

Sensors (Basel). 2025 Mar 8;25(6):1669. doi: 10.3390/s25061669.

Abstract

Musicians have an advantage in recognizing vocal emotions compared to non-musicians, a performance advantage often attributed to enhanced early auditory sensitivity to pitch. Yet a previous ERP study only detected group differences from 500 ms onward, suggesting that conventional ERP analyses might not be sensitive enough to detect early neural effects. To address this, we re-analyzed EEG data from 38 musicians and 39 non-musicians engaged in a vocal emotion perception task. Stimuli were generated using parameter-specific voice morphing to preserve emotional cues in either the pitch contour (F0) or timbre. By employing a neural decoding framework with a Linear Discriminant Analysis classifier, we tracked the evolution of emotion representations over time in the EEG signal. Converging with the previous ERP study, our findings reveal that musicians-but not non-musicians-exhibited significant emotion decoding between 500 and 900 ms after stimulus onset, a pattern observed for F0-Morphs only. These results suggest that musicians' superior vocal emotion recognition arises from more effective integration of pitch information during later processing stages rather than from enhanced early sensory encoding. Our study also demonstrates the potential of neural decoding approaches using EEG brain activity as a biological sensor for unraveling the temporal dynamics of voice perception.

摘要

与非音乐家相比,音乐家在识别声音情感方面具有优势,这种表现优势通常归因于对音高的早期听觉敏感性增强。然而,之前的一项ERP研究仅在500毫秒之后才检测到组间差异,这表明传统的ERP分析可能不够灵敏,无法检测到早期的神经效应。为了解决这个问题,我们重新分析了38名音乐家和39名非音乐家参与声音情感感知任务的脑电图数据。使用特定参数的语音变形生成刺激,以在音高轮廓(F0)或音色中保留情感线索。通过采用带有线性判别分析分类器的神经解码框架,我们追踪了脑电图信号中情感表征随时间的演变。与之前的ERP研究结果一致,我们的研究结果表明,只有音乐家在刺激开始后500至900毫秒之间表现出显著的情感解码,这种模式仅在F0变形中观察到。这些结果表明,音乐家卓越的声音情感识别能力源于后期处理阶段对音高信息更有效的整合,而非早期感觉编码的增强。我们的研究还证明了使用脑电图大脑活动作为生物传感器的神经解码方法在揭示语音感知时间动态方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03d8/11944463/efe8e87758c3/sensors-25-01669-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验