文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用深度学习和迁移学习对不均衡数据集进行胸部X光图像肺炎检测

Pneumonia Detection from Chest X-Ray Images Using Deep Learning and Transfer Learning for Imbalanced Datasets.

作者信息

Alshanketi Faisal, Alharbi Abdulrahman, Kuruvilla Mathew, Mahzoon Vahid, Siddiqui Shams Tabrez, Rana Nadim, Tahir Ali

机构信息

Department of Computer Science, College of Engineering and Computer Science, Jazan University, 45142, Jazan, Saudi Arabia.

Department of Computer and Information Sciences, Temple University, Pennsylvania, USA.

出版信息

J Imaging Inform Med. 2024 Nov 18. doi: 10.1007/s10278-024-01334-0.


DOI:10.1007/s10278-024-01334-0
PMID:39557737
Abstract

Pneumonia remains a significant global health challenge, necessitating timely and accurate diagnosis for effective treatment. In recent years, deep learning techniques have emerged as powerful tools for automating pneumonia detection from chest X-ray images. This paper provides a comprehensive investigation into the application of deep learning for pneumonia detection, with an emphasis on overcoming the challenges posed by imbalanced datasets. The study evaluates the performance of various deep learning architectures, including visual geometry group (VGG), residual networks (ResNet), and Vision Transformers (ViT) along with strategies to mitigate the impact of imbalanced dataset, on publicly available datasets such as the Chest X-Ray Images (Pneumonia) dataset, BRAX dataset, and CheXpert dataset. Additionally, transfer learning from pre-trained models, such as ImageNet, is investigated to leverage prior knowledge for improved performance on pneumonia detection tasks. Our investigation extends to zero-shot and few-shot learning experiments on different geographical regions. The study also explores semi-supervised learning methods, including the Mean Teacher algorithm, to utilize unlabeled data effectively. Experimental results demonstrate the efficacy of transfer learning, data augmentation, and balanced weight in addressing imbalanced datasets, leading to improved accuracy and performance in pneumonia detection. Our findings emphasize the importance of selecting appropriate strategies based on dataset characteristics, with semi-supervised learning showing particular promise in leveraging unlabeled data. The findings highlight the potential of deep learning techniques in revolutionizing pneumonia diagnosis and treatment, paving the way for more efficient and accurate clinical workflows in the future.

摘要

肺炎仍然是一项重大的全球健康挑战,需要及时准确的诊断以进行有效治疗。近年来,深度学习技术已成为从胸部X光图像中自动检测肺炎的强大工具。本文对深度学习在肺炎检测中的应用进行了全面研究,重点是克服不平衡数据集带来的挑战。该研究评估了各种深度学习架构的性能,包括视觉几何组(VGG)、残差网络(ResNet)和视觉Transformer(ViT),以及减轻不平衡数据集影响的策略,这些评估是在胸部X光图像(肺炎)数据集、BRAX数据集和CheXpert数据集等公开可用数据集上进行的。此外,还研究了从预训练模型(如图像网)进行迁移学习,以利用先验知识提高肺炎检测任务的性能。我们的研究扩展到不同地理区域的零样本和少样本学习实验。该研究还探索了半监督学习方法,包括均值教师算法,以有效利用未标记数据。实验结果证明了迁移学习、数据增强和平衡权重在处理不平衡数据集方面的有效性,从而提高了肺炎检测的准确性和性能。我们的研究结果强调了根据数据集特征选择合适策略的重要性,半监督学习在利用未标记数据方面显示出特别的前景。这些发现突出了深度学习技术在变革肺炎诊断和治疗方面的潜力,为未来更高效、准确的临床工作流程铺平了道路。

相似文献

[1]
Pneumonia Detection from Chest X-Ray Images Using Deep Learning and Transfer Learning for Imbalanced Datasets.

J Imaging Inform Med. 2024-11-18

[2]
Advancing respiratory disease diagnosis: A deep learning and vision transformer-based approach with a novel X-ray dataset.

Comput Biol Med. 2025-8

[3]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[4]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[5]
A medical image classification method based on self-regularized adversarial learning.

Med Phys. 2024-11

[6]
Generalizable diagnosis of chest radiographs through attention-guided decomposition of images utilizing self-consistency loss.

Comput Biol Med. 2024-9

[7]
A systematic review on feature extraction methods and deep learning models for detection of cancerous lung nodules at an early stage -the recent trends and challenges.

Biomed Phys Eng Express. 2024-11-20

[8]
Binary Classification of Pneumonia in Chest X-Ray Images Using Modified Contrast-Limited Adaptive Histogram Equalization Algorithm.

Sensors (Basel). 2025-6-26

[9]
Cognitive decline assessment using semantic linguistic content and transformer deep learning architecture.

Int J Lang Commun Disord. 2024

[10]
ViT-GCN: a novel hybrid model for accurate pneumonia diagnosis from x-ray images.

Biomed Phys Eng Express. 2025-7-21

引用本文的文献

[1]
Deep learning approach for automated hMPV classification.

Sci Rep. 2025-8-8

[2]
Improved swin transformer-based thorax disease classification with optimal feature selection using chest X-ray.

PLoS One. 2025-6-25

本文引用的文献

[1]
Deep Learning for Pneumonia Detection in Chest X-ray Images: A Comprehensive Survey.

J Imaging. 2024-7-23

[2]
Deep Transfer Learning Using Real-World Image Features for Medical Image Classification, with a Case Study on Pneumonia X-ray Images.

Bioengineering (Basel). 2024-4-20

[3]
Utilizing Longitudinal Chest X-Rays and Reports to Pre-fill Radiology Reports.

Med Image Comput Comput Assist Interv. 2023-10

[4]
Efficient pneumonia detection using Vision Transformers on chest X-rays.

Sci Rep. 2024-1-30

[5]
Distinguishing nontuberculous mycobacterial lung disease and Mycobacterium tuberculosis lung disease on X-ray images using deep transfer learning.

BMC Infect Dis. 2023-1-19

[6]
BRAX, Brazilian labeled chest x-ray dataset.

Sci Data. 2022-8-10

[7]
AI recognition of patient race in medical imaging: a modelling study.

Lancet Digit Health. 2022-6

[8]
Pneumonia detection in chest X-ray images using an ensemble of deep learning models.

PLoS One. 2021

[9]
Deep transfer learning for reducing health care disparities arising from biomedical data inequality.

Nat Commun. 2020-10-12

[10]
Efficient Pneumonia Detection in Chest Xray Images Using Deep Transfer Learning.

Diagnostics (Basel). 2020-6-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索