Alshanketi Faisal, Alharbi Abdulrahman, Kuruvilla Mathew, Mahzoon Vahid, Siddiqui Shams Tabrez, Rana Nadim, Tahir Ali
Department of Computer Science, College of Engineering and Computer Science, Jazan University, 45142, Jazan, Saudi Arabia.
Department of Computer and Information Sciences, Temple University, Pennsylvania, USA.
J Imaging Inform Med. 2024 Nov 18. doi: 10.1007/s10278-024-01334-0.
Pneumonia remains a significant global health challenge, necessitating timely and accurate diagnosis for effective treatment. In recent years, deep learning techniques have emerged as powerful tools for automating pneumonia detection from chest X-ray images. This paper provides a comprehensive investigation into the application of deep learning for pneumonia detection, with an emphasis on overcoming the challenges posed by imbalanced datasets. The study evaluates the performance of various deep learning architectures, including visual geometry group (VGG), residual networks (ResNet), and Vision Transformers (ViT) along with strategies to mitigate the impact of imbalanced dataset, on publicly available datasets such as the Chest X-Ray Images (Pneumonia) dataset, BRAX dataset, and CheXpert dataset. Additionally, transfer learning from pre-trained models, such as ImageNet, is investigated to leverage prior knowledge for improved performance on pneumonia detection tasks. Our investigation extends to zero-shot and few-shot learning experiments on different geographical regions. The study also explores semi-supervised learning methods, including the Mean Teacher algorithm, to utilize unlabeled data effectively. Experimental results demonstrate the efficacy of transfer learning, data augmentation, and balanced weight in addressing imbalanced datasets, leading to improved accuracy and performance in pneumonia detection. Our findings emphasize the importance of selecting appropriate strategies based on dataset characteristics, with semi-supervised learning showing particular promise in leveraging unlabeled data. The findings highlight the potential of deep learning techniques in revolutionizing pneumonia diagnosis and treatment, paving the way for more efficient and accurate clinical workflows in the future.
肺炎仍然是一项重大的全球健康挑战,需要及时准确的诊断以进行有效治疗。近年来,深度学习技术已成为从胸部X光图像中自动检测肺炎的强大工具。本文对深度学习在肺炎检测中的应用进行了全面研究,重点是克服不平衡数据集带来的挑战。该研究评估了各种深度学习架构的性能,包括视觉几何组(VGG)、残差网络(ResNet)和视觉Transformer(ViT),以及减轻不平衡数据集影响的策略,这些评估是在胸部X光图像(肺炎)数据集、BRAX数据集和CheXpert数据集等公开可用数据集上进行的。此外,还研究了从预训练模型(如图像网)进行迁移学习,以利用先验知识提高肺炎检测任务的性能。我们的研究扩展到不同地理区域的零样本和少样本学习实验。该研究还探索了半监督学习方法,包括均值教师算法,以有效利用未标记数据。实验结果证明了迁移学习、数据增强和平衡权重在处理不平衡数据集方面的有效性,从而提高了肺炎检测的准确性和性能。我们的研究结果强调了根据数据集特征选择合适策略的重要性,半监督学习在利用未标记数据方面显示出特别的前景。这些发现突出了深度学习技术在变革肺炎诊断和治疗方面的潜力,为未来更高效、准确的临床工作流程铺平了道路。
J Imaging Inform Med. 2024-11-18
Int J Lang Commun Disord. 2024
Biomed Phys Eng Express. 2025-7-21
Sci Rep. 2025-8-8
Med Image Comput Comput Assist Interv. 2023-10
Sci Rep. 2024-1-30
Sci Data. 2022-8-10
Lancet Digit Health. 2022-6
Diagnostics (Basel). 2020-6-19