文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用真实世界图像特征进行医学图像分类的深度迁移学习——以肺炎X光图像为例

Deep Transfer Learning Using Real-World Image Features for Medical Image Classification, with a Case Study on Pneumonia X-ray Images.

作者信息

Gu Chanhoe, Lee Minhyeok

机构信息

Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.

School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.

出版信息

Bioengineering (Basel). 2024 Apr 20;11(4):406. doi: 10.3390/bioengineering11040406.


DOI:10.3390/bioengineering11040406
PMID:38671827
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11048359/
Abstract

Deep learning has profoundly influenced various domains, particularly medical image analysis. Traditional transfer learning approaches in this field rely on models pretrained on domain-specific medical datasets, which limits their generalizability and accessibility. In this study, we propose a novel framework called real-world feature transfer learning, which utilizes backbone models initially trained on large-scale general-purpose datasets such as ImageNet. We evaluate the effectiveness and robustness of this approach compared to models trained from scratch, focusing on the task of classifying pneumonia in X-ray images. Our experiments, which included converting grayscale images to RGB format, demonstrate that real-world-feature transfer learning consistently outperforms conventional training approaches across various performance metrics. This advancement has the potential to accelerate deep learning applications in medical imaging by leveraging the rich feature representations learned from general-purpose pretrained models. The proposed methodology overcomes the limitations of domain-specific pretrained models, thereby enabling accelerated innovation in medical diagnostics and healthcare. From a mathematical perspective, we formalize the concept of real-world feature transfer learning and provide a rigorous mathematical formulation of the problem. Our experimental results provide empirical evidence supporting the effectiveness of this approach, laying the foundation for further theoretical analysis and exploration. This work contributes to the broader understanding of feature transferability across domains and has significant implications for the development of accurate and efficient models for medical image analysis, even in resource-constrained settings.

摘要

深度学习对各个领域都产生了深远影响,尤其是在医学图像分析领域。该领域传统的迁移学习方法依赖于在特定领域医学数据集上预训练的模型,这限制了它们的通用性和可及性。在本研究中,我们提出了一种名为现实世界特征迁移学习的新颖框架,它利用最初在大规模通用数据集(如图像网)上训练的主干模型。我们将这种方法与从头开始训练的模型进行比较,评估其有效性和稳健性,重点关注X射线图像中肺炎的分类任务。我们的实验(包括将灰度图像转换为RGB格式)表明,在各种性能指标方面,现实世界特征迁移学习始终优于传统训练方法。这一进展有可能通过利用从通用预训练模型中学到的丰富特征表示,加速深度学习在医学成像中的应用。所提出的方法克服了特定领域预训练模型的局限性,从而推动医学诊断和医疗保健领域的加速创新。从数学角度来看,我们形式化了现实世界特征迁移学习的概念,并对该问题给出了严格的数学表述。我们的实验结果提供了支持该方法有效性的实证证据,为进一步的理论分析和探索奠定了基础。这项工作有助于更广泛地理解跨领域的特征可迁移性,对开发准确高效的医学图像分析模型具有重要意义,即使在资源受限的环境中也是如此。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5f1/11048359/592d341f34b6/bioengineering-11-00406-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5f1/11048359/a1891c1fe90a/bioengineering-11-00406-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5f1/11048359/65b7473ab70e/bioengineering-11-00406-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5f1/11048359/c76762967b00/bioengineering-11-00406-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5f1/11048359/592d341f34b6/bioengineering-11-00406-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5f1/11048359/a1891c1fe90a/bioengineering-11-00406-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5f1/11048359/65b7473ab70e/bioengineering-11-00406-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5f1/11048359/c76762967b00/bioengineering-11-00406-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5f1/11048359/592d341f34b6/bioengineering-11-00406-g004.jpg

相似文献

[1]
Deep Transfer Learning Using Real-World Image Features for Medical Image Classification, with a Case Study on Pneumonia X-ray Images.

Bioengineering (Basel). 2024-4-20

[2]
Targeted transfer learning to improve performance in small medical physics datasets.

Med Phys. 2020-12

[3]
Deep Transfer Learning with Enhanced Feature Fusion for Detection of Abnormalities in X-ray Images.

Cancers (Basel). 2023-8-7

[4]
Novel Transfer Learning Approach for Medical Imaging with Limited Labeled Data.

Cancers (Basel). 2021-3-30

[5]
Foundation models in gastrointestinal endoscopic AI: Impact of architecture, pre-training approach and data efficiency.

Med Image Anal. 2024-12

[6]
A transfer learning method with deep residual network for pediatric pneumonia diagnosis.

Comput Methods Programs Biomed. 2020-4

[7]
Construction and Validation of a General Medical Image Dataset for Pretraining.

J Imaging Inform Med. 2025-4

[8]
A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.

Comput Methods Programs Biomed. 2017-3

[9]
Ensemble of adapted convolutional neural networks (CNN) methods for classifying colon histopathological images.

PeerJ Comput Sci. 2022-7-5

[10]
Noise-induced modality-specific pretext learning for pediatric chest X-ray image classification.

Front Artif Intell. 2024-9-5

引用本文的文献

[1]
Special Issue: Artificial Intelligence in Advanced Medical Imaging.

Bioengineering (Basel). 2024-12-5

[2]
Integrating Machine Learning for Personalized Fracture Risk Assessment: A Multimodal Approach.

Korean J Fam Med. 2024-11

[3]
Pneumonia Detection from Chest X-Ray Images Using Deep Learning and Transfer Learning for Imbalanced Datasets.

J Imaging Inform Med. 2024-11-18

[4]
Artificial Intelligence (AI)-Enhanced Detection of Diabetic Retinopathy From Fundus Images: The Current Landscape and Future Directions.

Cureus. 2024-8-26

本文引用的文献

[1]
Spatially Explicit Active Learning for Crop-Type Mapping from Satellite Image Time Series.

Sensors (Basel). 2024-3-26

[2]
Leveraging Remote Sensing Data for Yield Prediction with Deep Transfer Learning.

Sensors (Basel). 2024-1-24

[3]
MetaSwin: a unified meta vision transformer model for medical image segmentation.

PeerJ Comput Sci. 2024-1-3

[4]
Recent Advancements in Deep Learning Using Whole Slide Imaging for Cancer Prognosis.

Bioengineering (Basel). 2023-7-28

[5]
A fully automated approach involving neuroimaging and deep learning for Parkinson's disease detection and severity prediction.

PeerJ Comput Sci. 2023-7-19

[6]
Diagnostic efficiency of multi-modal MRI based deep learning with Sobel operator in differentiating benign and malignant breast mass lesions-a retrospective study.

PeerJ Comput Sci. 2023-7-17

[7]
A fine-tuned YOLOv5 deep learning approach for real-time house number detection.

PeerJ Comput Sci. 2023-7-3

[8]
Transformers in medical imaging: A survey.

Med Image Anal. 2023-8

[9]
Transfer learning for medical image classification: a literature review.

BMC Med Imaging. 2022-4-13

[10]
Deep Neural Networks for Medical Image Segmentation.

J Healthc Eng. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索