Suppr超能文献

利用深度迁移学习在胸部X光图像中进行高效肺炎检测

Efficient Pneumonia Detection in Chest Xray Images Using Deep Transfer Learning.

作者信息

Hashmi Mohammad Farukh, Katiyar Satyarth, Keskar Avinash G, Bokde Neeraj Dhanraj, Geem Zong Woo

机构信息

Department of Electronics and Communication Engineering, National Institute of Technology, Warangal 506004, India.

Department of Electronics and Communication Engineering, Harcourt Butler Technical University, Kanpur 208002, India.

出版信息

Diagnostics (Basel). 2020 Jun 19;10(6):417. doi: 10.3390/diagnostics10060417.

Abstract

Pneumonia causes the death of around 700,000 children every year and affects 7% of the global population. Chest X-rays are primarily used for the diagnosis of this disease. However, even for a trained radiologist, it is a challenging task to examine chest X-rays. There is a need to improve the diagnosis accuracy. In this work, an efficient model for the detection of pneumonia trained on digital chest X-ray images is proposed, which could aid the radiologists in their decision making process. A novel approach based on a weighted classifier is introduced, which combines the weighted predictions from the state-of-the-art deep learning models such as ResNet18, Xception, InceptionV3, DenseNet121, and MobileNetV3 in an optimal way. This approach is a supervised learning approach in which the network predicts the result based on the quality of the dataset used. Transfer learning is used to fine-tune the deep learning models to obtain higher training and validation accuracy. Partial data augmentation techniques are employed to increase the training dataset in a balanced way. The proposed weighted classifier is able to outperform all the individual models. Finally, the model is evaluated, not only in terms of test accuracy, but also in the AUC score. The final proposed weighted classifier model is able to achieve a test accuracy of 98.43% and an AUC score of 99.76 on the unseen data from the Guangzhou Women and Children's Medical Center pneumonia dataset. Hence, the proposed model can be used for a quick diagnosis of pneumonia and can aid the radiologists in the diagnosis process.

摘要

肺炎每年导致约70万名儿童死亡,影响全球7%的人口。胸部X光主要用于这种疾病的诊断。然而,即使对于训练有素的放射科医生来说,检查胸部X光也是一项具有挑战性的任务。提高诊断准确性很有必要。在这项工作中,提出了一种在数字胸部X光图像上训练的高效肺炎检测模型,该模型可以帮助放射科医生进行决策。引入了一种基于加权分类器的新方法,该方法以最优方式结合了来自ResNet18、Xception、InceptionV3、DenseNet121和MobileNetV3等先进深度学习模型的加权预测。这种方法是一种监督学习方法,其中网络根据所使用数据集的质量预测结果。使用迁移学习对深度学习模型进行微调,以获得更高的训练和验证准确率。采用部分数据增强技术以平衡的方式增加训练数据集。所提出的加权分类器能够优于所有单个模型。最后,不仅根据测试准确率,还根据AUC分数对模型进行评估。最终提出的加权分类器模型在广州妇女儿童医疗中心肺炎数据集的未见数据上能够达到98.43%的测试准确率和99.76的AUC分数。因此,所提出的模型可用于肺炎的快速诊断,并可在诊断过程中帮助放射科医生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8759/7345724/012feef55b15/diagnostics-10-00417-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验