Suppr超能文献

BCL3、GBP1、IFI16 和 CCR1 作为多发性硬化症顶叶灰质病变的潜在脑源性生物标志物。

BCL3, GBP1, IFI16, and CCR1 as potential brain-derived biomarkers for parietal grey matter lesions in multiple sclerosis.

机构信息

The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

出版信息

Sci Rep. 2024 Nov 18;14(1):28543. doi: 10.1038/s41598-024-76949-y.

Abstract

Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system, progressing from Relapsing-Remitting MS (RRMS) to Secondary Progressive MS (SPMS) in many cases. The transition involves complex biological changes. Our study aims to identify potential biomarkers for distinguishing SPMS by analyzing gene expression differences between normal-appearing and lesioned parietal grey matter, which may also contribute to understand the pathogenesis of SPMS. We utilized public datasets from the Gene Expression Omnibus (GEO), applying bioinformatics and machine learning techniques including Weighted Gene Co-expression Network Analysis (WGCNA), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) enrichment analysis, protein-protein interaction (PPI) networks, the Least Absolute Shrinkage and Selection Operator (LASSO), and Random Forest (RF) for predictive model construction. Our study also included analyses of immune cell infiltration. The study identified 359 DEGs, with 105 up-regulated and 254 down-regulated. WGCNA identified 264 common genes, which were subjected to KEGG and GO enrichment analyses, highlighting their role in immune response and viral infection pathways. Four genes (BCL3, GBP1, IFI16, and CCR1) were identified as key biomarkers for SPMS, supported by LASSO regression and RF analyses. These genes were further validated through receiver operating characteristic (ROC) curves, demonstrating significant predictive potential for SPMS. Our study provides a novel set of biomarkers for SPMS from lesioned grey matter of SPMS cases, offering potential for diagnosis and targeted therapeutic strategies. The identified biomarkers link closely with SPMS pathology, especially regarding immune system modulation.

摘要

多发性硬化症(MS)是一种中枢神经系统的慢性自身免疫性疾病,在许多情况下,它会从复发缓解型多发性硬化症(RRMS)进展为继发进展型多发性硬化症(SPMS)。这种转变涉及到复杂的生物学变化。我们的研究旨在通过分析正常外观和病变顶叶灰质之间的基因表达差异,找到潜在的生物标志物来区分 SPMS,这也有助于理解 SPMS 的发病机制。我们利用来自基因表达综合数据库(GEO)的公共数据集,应用生物信息学和机器学习技术,包括加权基因共表达网络分析(WGCNA)、京都基因与基因组百科全书(KEGG)、基因本体论(GO)富集分析、蛋白质-蛋白质相互作用(PPI)网络、最小绝对收缩和选择算子(LASSO)以及随机森林(RF),用于预测模型的构建。我们的研究还包括对免疫细胞浸润的分析。研究确定了 359 个差异表达基因,其中 105 个上调,254 个下调。WGCNA 鉴定出 264 个共同基因,这些基因经过 KEGG 和 GO 富集分析,突出了它们在免疫反应和病毒感染途径中的作用。四个基因(BCL3、GBP1、IFI16 和 CCR1)被确定为 SPMS 的关键生物标志物,得到了 LASSO 回归和 RF 分析的支持。这些基因通过接收者操作特征(ROC)曲线得到进一步验证,表明它们对 SPMS 具有显著的预测潜力。我们的研究从 SPMS 病例的病变灰质中提供了一组新的 SPMS 生物标志物,为诊断和靶向治疗策略提供了潜力。鉴定出的生物标志物与 SPMS 病理密切相关,特别是在免疫系统调节方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc4a/11574279/df64f313f821/41598_2024_76949_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验