Suppr超能文献

下一代聚(ε-己内酯)支架:体内非破坏性监测与加速生物降解

Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation.

作者信息

Kolouchova Kristyna, Thijssen Quinten, Groborz Ondrej, Van Damme Lana, Humajova Jana, Matous Petr, Quaak Astrid, Dusa Martin, Kucka Jan, Sefc Ludek, Hruby Martin, Van Vlierberghe Sandra

机构信息

Polymer Chemistry and Biomaterials Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281, Building S4, Belgie, Ghent, 9000, Belgium.

Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovská 1, Prague 2, Prague, 12000, Czech Republic.

出版信息

Adv Healthc Mater. 2025 Jan;14(1):e2402256. doi: 10.1002/adhm.202402256. Epub 2024 Nov 19.

Abstract

Poly(ɛ-caprolactone) (PCL) is a biocompatible, biodegradable, and highly mechanically resilient FDA-approved material (for specific biomedical applications, e.g. as drug delivery devices, in sutures, or as an adhesion barrier), rendering it a promising candidate to serve bone tissue engineering. However, in vivo monitoring of PCL-based implants, as well as biodegradable implants in general, and their degradation profiles pose a significant challenge, hindering further development in the tissue engineering field and subsequent clinical adoption. To address this, photo-cross-linkable mechanically resilient PCL networks are developed and functionalized with a radiopaque monomer, 5-acrylamido-2,4,6-triiodoisophthalic acid (AATIPA), to enable non-destructive in vivo monitoring of PCL-based implants. The covalent incorporation of AATIPA into the crosslinked PCL networks does not significantly affect their crosslinking kinetics, mechanical properties, or thermal properties, but it increases their hydrolysis rate and radiopacity. Complex and porous 3D designs of radiopaque PCL networks can be effectively monitored in vivo. This work paves the way toward non-invasive monitoring of in vivo degradation profiles and early detection of potential implant malfunctions.

摘要

聚(ε-己内酯)(PCL)是一种生物相容性、可生物降解且具有高机械弹性的材料,已获美国食品药品监督管理局(FDA)批准(用于特定生物医学应用,如药物递送装置、缝线或粘连屏障),这使其成为骨组织工程领域的一个有潜力的候选材料。然而,对基于PCL的植入物以及一般的可生物降解植入物进行体内监测及其降解情况,是一项重大挑战,阻碍了组织工程领域的进一步发展及后续临床应用。为解决这一问题,研发了可光交联的具有机械弹性的PCL网络,并使用一种不透射线的单体5-丙烯酰胺基-2,4,6-三碘间苯二甲酸(AATIPA)进行功能化,以实现对基于PCL的植入物进行无损体内监测。AATIPA共价掺入交联的PCL网络中,不会显著影响其交联动力学、机械性能或热性能,但会提高其水解速率和不透射线性能。不透射线的PCL网络的复杂多孔三维设计可在体内得到有效监测。这项工作为无创监测体内降解情况和早期发现潜在的植入物故障铺平了道路。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验