Suppr超能文献

“使我们团结的因素多于使我们分裂的因素”。通过根据34项运动的任务、个体和环境相似性进行聚类来优化人才转移过程。

"There is more that unites us than divides us". Optimizing talent transfer processes by clustering 34 sports by their task, individual and environmental similarities.

作者信息

Teunissen Jan Willem, De Bock Jelle, Schasfoort Dominique, Slembrouck Maarten, Verstockt Steven, Lenoir Matthieu, Pion Johan

机构信息

Institute for Studies in Sports and Exercise, HAN University of Applied Sciences, Nijmegen, Netherlands.

Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.

出版信息

Front Sports Act Living. 2024 Nov 1;6:1445510. doi: 10.3389/fspor.2024.1445510. eCollection 2024.

Abstract

Sports are characterized by unique rules, environments, and tasks, but also share fundamental similarities with each other sport. Such between-sports parallels can be vital for optimizing talent transfer processes. This study aimed to explore similarities between sports to provide an objective basis for clustering sports into families by means of machine learning. An online survey was conducted, garnering responses from 1,247 coaches across 36 countries and 34 sports. The survey gauged the importance (0 = not important 10 = important) of 18 characteristics related to the sport and the athlete performing in that sport. These traits formed the basis for the categorization of a sport by means of machine learning, particularly unsupervised clustering, and the LIME feature explainer. Analysis grouped 34 sports into five clusters based on shared features. A similarity matrix illustrated the degree of overlap among sports. The application of unsupervised clustering emphasized the lack of a single overarching attribute across sports, marking a shift away from traditional clustering approaches that rely on a limited set of characteristics for talent transfer. The results highlight the importance of identifying common sports for talent transfer, which could prove advantageous in guiding athletes towards new sporting directions.

摘要

体育运动具有独特的规则、环境和任务,但彼此之间也存在基本的相似之处。这种运动间的相似性对于优化人才转移过程可能至关重要。本研究旨在探索体育运动之间的相似性,以便通过机器学习为将体育运动聚类为不同类别提供客观依据。开展了一项在线调查,收集了来自36个国家、34项体育运动的1247名教练的回复。该调查评估了与某项运动以及参与该项运动的运动员相关的18个特征的重要性(0 = 不重要,10 = 重要)。这些特征构成了通过机器学习,特别是无监督聚类和LIME特征解释器对一项运动进行分类的基础。分析根据共同特征将34项体育运动分为五个类别。相似性矩阵展示了各项运动之间的重叠程度。无监督聚类的应用强调了各项运动缺乏单一的总体属性,这标志着与传统聚类方法的转变,传统方法依赖有限的一组特征进行人才转移。研究结果凸显了识别有利于人才转移的共同运动项目的重要性,这在引导运动员转向新的运动方向方面可能具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a5/11571061/7d440d45310a/fspor-06-1445510-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验