Fremerey Melinda, Hörnig Lukas, Schaffner Sandra
IW - German Economic Institute, Mailbox 10 19 42, 50459 Köln, Germany.
RWI - Leibniz-Institut für Wirtschaftsforschung e.V., Mailbox 10 30 54, 45030 Essen, Germany.
Data Brief. 2024 Oct 18;57:111044. doi: 10.1016/j.dib.2024.111044. eCollection 2024 Dec.
The RWI-GEO-VOTE dataset was collected to understand how the refugee inflows affected the vote share of parties in the 2017 German federal election. The dataset provides granular insights into the 2017 German federal election at the 1 km x 1 km grid cell level. Compiled by the Research Data Center (FDZ) Ruhr at RWI, it covers 175,758 grid cells and provides data on valid votes for all parties that could be elected. The data collection process involved reassigning votes from the polling station to the grid cell level, excluding absentee ballots. The data generation process included intersecting populated grid cells with constituency (Wahlbezirk, smallest German unit) shapefiles, adjusting adult population shares, and linking grid cell/constituency combinations to municipalities. Election results were incorporated using electoral district geometries or polling station addresses, with unassigned grid cells filled in based on municipal-level data. This dataset is of interest to researchers who wish to analyze election results at a spatially granular level.
RWI - GEO - VOTE数据集的收集目的是了解难民流入如何影响2017年德国联邦选举中各政党的选票份额。该数据集在1公里×1公里的网格单元层面提供了对2017年德国联邦选举的详细洞察。由位于鲁尔区的莱布尼茨经济研究所(RWI)的研究数据中心(FDZ)编制,它涵盖了175,758个网格单元,并提供了所有可能当选政党的有效选票数据。数据收集过程涉及将投票站的选票重新分配到网格单元层面,不包括缺席选票。数据生成过程包括将有人居住的网格单元与选区(德国最小的单位“Wahlbezirk”)的形状文件相交,调整成年人口份额,并将网格单元/选区组合与市政当局联系起来。选举结果是使用选区几何形状或投票站地址纳入的,未分配的网格单元根据市级数据进行填充。该数据集对于希望在空间粒度层面分析选举结果的研究人员具有吸引力。