Murali Midhun, Banerjee Amit, Basu Tanmoy
Centre for Quantum Engineering, Research and Education (CQuERE), TCG-Centres for Research and Education in Science and Technology (TCG-CREST), Sector V, Salt Lake, Kolkata-700091, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
Beilstein J Nanotechnol. 2024 Nov 14;15:1415-1426. doi: 10.3762/bjnano.15.114. eCollection 2024.
Lithium niobate (LN) stands out as a versatile nonlinear optoelectronic material which can be directly applied in tunable modulators, filters, parametric amplifiers, and photonic integrated circuits. Recently, LN photonic crystals have garnered attention as a compelling candidate for incorporation into photonic integrated circuits, showcasing their potential in advancing the field. Photonic crystals possess a widely acknowledged capability to manipulate the transmission of light modes, similar to how nanostructures have been utilized to regulate electron-related phenomena. Here we study the optical performance of a one-dimensional stacked photonic crystal based on LN and TiO/SiO. We studied the quarter wavelength multi-layered stack using electromagnetic simulation. The forbidden-frequency region indifferent from the bulk material has been observed around 1.55 µm. A high refractive index and non-linear optical and electro-optical properties enable LN to be used for more efficient manipulation of light. The highly reflective quarternary stack can play an important role in diverse fields such as photonics, optomechanics, optoelectronics, signal processing, and quantum technologies, spanning the spectrum from photon generation (including single-photon sources and lasers) to their manipulation (encompassing waveguiding, beam splitting, filters, and spin-photon entanglement), and detection (involving single-photon detectors).
铌酸锂(LN)是一种多功能非线性光电材料,可直接应用于可调谐调制器、滤波器、参量放大器和光子集成电路。近来,LN光子晶体作为光子集成电路的有力候选材料受到关注,展现出推动该领域发展的潜力。光子晶体具有公认的操纵光模式传输的能力,这类似于利用纳米结构来调控与电子相关的现象。在此,我们研究基于LN和TiO/SiO的一维堆叠光子晶体的光学性能。我们使用电磁模拟研究了四分之一波长多层堆叠结构。在1.55 µm左右观察到了与块状材料不同的禁频区域。高折射率以及非线性光学和电光特性使LN能够用于更高效地操纵光。这种高反射率的四元堆叠结构在光子学、光力学、光电子学、信号处理和量子技术等多个领域都能发挥重要作用,涵盖从光子产生(包括单光子源和激光器)到其操纵(包括波导、光束分裂、滤波器和自旋 - 光子纠缠)以及检测(涉及单光子探测器)的整个光谱范围。