Suppr超能文献

使用“机器学习”人工智能工具评估心肺复苏术中实时按压频率和按压深度的可行性。

Feasibility of real-time compression frequency and compression depth assessment in CPR using a "machine-learning" artificial intelligence tool.

作者信息

Ecker Hannes, Adams Niels-Benjamin, Schmitz Michael, Wetsch Wolfgang A

机构信息

University of Cologne, Faculty of Medicine, Cologne, Germany.

University Hospital of Cologne, Department of Anesthesiology and Intensive Care Medicine, Cologne, Germany.

出版信息

Resusc Plus. 2024 Nov 5;20:100825. doi: 10.1016/j.resplu.2024.100825. eCollection 2024 Dec.

Abstract

BACKGROUND

Video assisted cardiopulmonary resuscitation (V-CPR) has demonstrated to be efficient in improving CPR quality and patient outcomes, as Emergency Medical Service (EMS) dispatchers can use the video stream of a caller for diagnostic purposes and give instructions in a CPR scenario. However, the new challenges faced by EMS dispatchers during video-guided CPR (V-CPR)-such as analyzing the video stream, providing feedback to the caller, and managing stress-demand innovative solutions. This study explores the feasibility of incorporating an open-source "machine-learning" tool (artificial intelligence - AI), to evaluate the feasibility and accuracy in correctly detecting the actual compression frequency and compression depth in video footage of a simulated CPR.

DESIGN

MediaPipe Pose Landmark Detection (Google LLC, Mountain View, CA, USA), an open-source AI software using "machine-learning" models to detect human bodies in images and videos, was programmed to assess compression frequency an depth in nine videos, showing CPR on a resuscitation manikin. Compression frequency and depth were assessed from compression to compression with AI software and were compared to the manikin's internal software (QCPR, Laerdal, Stavanger, Norway). After testing for Gaussian distribution, means of non-gaussian data were compared using Wilcoxon matched-pairs signed rank test and the Bland Altman method.

MAIN RESULTS

MediaPipe Pose Landmark Detection successfully identified and tracked the person performing CPR in all nine video sequences. There were high levels of agreement between compression frequencies derived from AI and manikin's software. However, the precision of compression depth showed major inaccuracies and was overall not accurate.

CONCLUSIONS

This feasibility study demonstrates the potential of open-source "machine-learning" tools in providing real-time feedback on V-CPR video sequences. In this pilot study, an open-source landmark detection AI software was able to assess CPR compression frequency with high agreement to actual frequency derived from the CPR manikin. For compression depth, its performance was not accurate, suggesting the need for adjustment. Since the software used is currently not intended for medical use, further development is necessary before the technology can be evaluated in real CPR.

摘要

背景

视频辅助心肺复苏(V-CPR)已被证明在提高心肺复苏质量和患者预后方面是有效的,因为紧急医疗服务(EMS)调度员可以利用来电者的视频流进行诊断,并在心肺复苏场景中提供指导。然而,EMS调度员在视频指导心肺复苏(V-CPR)过程中面临新的挑战,如分析视频流、向来电者提供反馈以及应对压力,这需要创新的解决方案。本研究探讨了纳入开源“机器学习”工具(人工智能-AI)的可行性,以评估在模拟心肺复苏视频中正确检测实际按压频率和按压深度的可行性和准确性。

设计

MediaPipe姿态地标检测(谷歌有限责任公司,美国加利福尼亚州山景城)是一款使用“机器学习”模型在图像和视频中检测人体的开源人工智能软件,被编程用于评估九个视频中的按压频率和深度,这些视频展示了在复苏人体模型上进行的心肺复苏。使用人工智能软件从一次按压到下一次按压评估按压频率和深度,并与人体模型的内部软件(QCPR,挪威斯塔万格Laerdal公司)进行比较。在对高斯分布进行测试后,使用Wilcoxon配对符号秩检验和Bland Altman方法比较非高斯数据的均值。

主要结果

MediaPipe姿态地标检测在所有九个视频序列中成功识别并跟踪了进行心肺复苏的人员。人工智能得出的按压频率与人体模型软件得出的按压频率之间存在高度一致性。然而,按压深度的精确度显示出较大误差,总体上不准确。

结论

这项可行性研究证明了开源“机器学习”工具在为V-CPR视频序列提供实时反馈方面的潜力。在这项初步研究中,一款开源地标检测人工智能软件能够评估心肺复苏按压频率,与从心肺复苏人体模型得出的实际频率高度一致。对于按压深度,其性能不准确,表明需要进行调整。由于所使用的软件目前并非用于医疗用途,在该技术能够在实际心肺复苏中进行评估之前,还需要进一步开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/325a/11570746/b44f533e5432/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验