Sievering Ivan-Daniel, Senouf Ortal, Mahendiran Thabo, Nanchen David, Fournier Stephane, Muller Olivier, Frossard Pascal, Abbe Emmanuel, Thanou Dorina
Signal Processing Laboratory 4EPFL 1015 Lausanne Switzerland.
Swiss Data Science CenterETH Zurich and EPFL 1015 Lausanne Switzerland.
IEEE Open J Eng Med Biol. 2024 May 27;5:837-845. doi: 10.1109/OJEMB.2024.3403948. eCollection 2024.
In patients with coronary artery disease, the prediction of future cardiac events such as myocardial infarction (MI) remains a major challenge. In this work, we propose a novel anatomy-informed multimodal deep learning framework to predict future MI from clinical data and Invasive Coronary Angiography (ICA) images. The images are analyzed by Convolutional Neural Networks (CNNs) guided by anatomical information, and the clinical data by an Artificial Neural Network (ANN). Embeddings from both sources are then merged to provide a patient-level prediction. The results of our framework on a clinical study of 445 patients admitted with acute coronary syndromes confirms that multimodal learning increases the predictive power and achieves good performance (AUC: [Formula: see text] & F1-Score: [Formula: see text]), which outperforms the prediction obtained by each modality independently as well as that of interventional cardiologists (AUC: 0.54 & F1-Score: 0.18). To the best of our knowledge, this is the first attempt towards combining multimodal data through a deep learning framework for future MI prediction. Although it demonstrates the superiority of multi-modal approaches over single modality, the results do not yet meet the necessary criteria for practical application.
在冠心病患者中,预测未来心脏事件(如心肌梗死(MI))仍然是一项重大挑战。在这项工作中,我们提出了一种新颖的解剖学信息多模态深度学习框架,用于从临床数据和有创冠状动脉造影(ICA)图像预测未来的心肌梗死。通过由解剖学信息引导的卷积神经网络(CNN)分析图像,并通过人工神经网络(ANN)分析临床数据。然后将来自这两个来源的嵌入合并以提供患者水平的预测。我们的框架在对445例急性冠状动脉综合征患者的临床研究中的结果证实,多模态学习提高了预测能力并取得了良好的性能(AUC:[公式:见原文] & F1评分:[公式:见原文]),其性能优于单独通过每种模态获得的预测以及介入心脏病专家的预测(AUC:0.54 & F1评分:0.18)。据我们所知,这是首次尝试通过深度学习框架结合多模态数据来预测未来的心肌梗死。尽管它证明了多模态方法优于单模态方法,但结果尚未达到实际应用的必要标准。