Fomin Fedor V, Golovach Petr A, Inamdar Tanmay, Saurabh Saket, Zehavi Meirav
University of Bergen, Bergen, Norway.
Indian Institute of Technology, Jodhpur, Jodhpur, India.
Discrete Comput Geom. 2024;72(4):1596-1629. doi: 10.1007/s00454-024-00633-1. Epub 2024 Mar 12.
The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of equal disks packed into a rectangle and integers and , we ask whether it is possible by changing positions of at most disks to pack disks. Thus the problem of packing equal disks is the special case of our problem with . While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for . Our main algorithmic contribution is an algorithm that solves the repacking problem in time , where || is the input size. That is, the problem is fixed-parameter tractable parameterized by and .
将相同的圆盘(或圆)装填到一个矩形中的问题是一个基本的几何问题。(这里所说的装填是指在矩形中排列圆盘且不重叠。)我们考虑相同圆盘装填问题的如下算法推广。在这个问题中,对于给定的将相同圆盘装填到矩形中的情况,问题在于通过改变少量圆盘的位置,我们是否能够为装填更多圆盘腾出空间。更正式地说,在重新装填问题中,对于给定的一组装填到矩形中的相同圆盘以及整数 (k) 和 (m),我们要问是否有可能通过改变至多 (k) 个圆盘的位置来装填 (m) 个圆盘。因此,相同圆盘装填问题是我们这个问题在 (k = 0) 时的特殊情况。虽然将相同圆盘装填到矩形中的计算复杂度仍然未知,但我们证明对于 (k = 1),重新装填问题已经是NP难的。我们主要的算法贡献是一个能在时间 (O(2^k\cdot ||)) 内解决重新装填问题的算法,其中 (||) 是输入规模。也就是说,该问题以 (k) 为参数是固定参数可处理的。