Department of Electrical and Computer EngineeringThe University of British Columbia Vancouver BC V6T 1Z4 Canada.
BC Children's Hospital Research InstituteThe University of British Columbia Vancouver BC V6T 1Z4 Canada.
IEEE J Transl Eng Health Med. 2024 Oct 30;12:684-696. doi: 10.1109/JTEHM.2024.3488523. eCollection 2024.
Non-contact respiratory rate estimation (RR) is highly desirable for infants because of their sensitive skin. We propose a novel RGB video-based RR estimation method for infants in the neonatal intensive care unit (NICU) that can accurately measure the RR contact-less.
We utilize Eulerian video magnification (EVM) method and develop an adaptive peak prominence threshold value estimation method to address challenges of RR estimation (e.g., dark environments, shallow breathing, babies swaddled or under blankets). We recruited 13 infants recorded for 4 consecutive hours per case. We then evaluate the performance of the algorithm for several (i.e., 19 to 25) randomly selected videos, each lasting 1 minute, for each case.
Intraclass correlation coefficients of the proposed method over manually and automatically selected ROIs are 0.91 (95%CI: [Formula: see text]) and 0.88 (95%CI: [Formula: see text]), indicating excellent and good reliability, respectively. The Bland-Altman analysis of the proposed algorithm shows higher agreement between the estimated values via the proposed method and visually counted RR than the agreement between the RR obtained from the impedance sensors and reference RR, and agreement between a former EVM-based method and reference RR values.
Our algorithm shows promising results for RR estimation in a real-life NICU environment under various conditions that can confound the estimation.
We present a robust algorithm for non-contact neonatal respiratory rate monitoring, capable of performing well under various environmental lighting conditions in NICU, even when the infant is clothed or covered.
由于婴儿皮肤敏感,因此非常需要对其进行非接触式呼吸频率估计(RR)。我们提出了一种新颖的基于 RGB 视频的新生儿重症监护病房(NICU)中婴儿 RR 无接触式估计方法,该方法可以准确地进行 RR 测量。
我们利用欧拉视频放大(EVM)方法,并开发了一种自适应峰值突出阈值估计方法,以解决 RR 估计中的挑战(例如,黑暗环境、浅呼吸、婴儿被包裹或盖在毯子下)。我们招募了 13 名婴儿,每个案例记录 4 个连续小时。然后,我们针对每个案例,评估算法在随机选择的几个(即 19 到 25)视频中的性能,每个视频持续 1 分钟。
手动和自动选择 ROI 时,所提出方法的组内相关系数分别为 0.91(95%CI:[公式:见正文])和 0.88(95%CI:[公式:见正文]),分别表示极好和良好的可靠性。所提出算法的 Bland-Altman 分析表明,与通过阻抗传感器获得的 RR 和参考 RR 之间的一致性以及与先前的基于 EVM 的方法和参考 RR 值之间的一致性相比,该方法的估计值与视觉计数的 RR 之间具有更高的一致性。
我们的算法在各种可能干扰估计的条件下,在现实 NICU 环境中显示出了有前途的 RR 估计结果。
我们提出了一种用于非接触式新生儿呼吸率监测的稳健算法,即使在婴儿穿衣或盖着时,它也能在 NICU 中的各种环境光照条件下良好地工作。