Suppr超能文献

机器学习势在不同尺寸石墨烯-水体系间的可转移性:来自数值指标和物理特性的见解

Transferable performance of machine learning potentials across graphene-water systems of different sizes: Insights from numerical metrics and physical characteristics.

作者信息

Liu Dongfei, Wu Jianzhong, Lu Diannan

机构信息

Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA.

出版信息

J Chem Phys. 2024 Nov 21;161(19). doi: 10.1063/5.0233395.

Abstract

Machine learning potentials (MLPs) are promising for various chemical systems, but their complexity and lack of physical interpretability challenge their broad applicability. This study evaluates the transferability of the deep potential (DP) and neural equivariant interatomic potential (NequIP) models for graphene-water systems using numerical metrics and physical characteristics. We found that the data quality from density functional theory calculations significantly influences MLP predictive accuracy. Prediction errors in transferring systems reveal the particularities of quantum chemical calculations on the heterogeneous graphene-water systems. Even for supercells with non-planar graphene carbon atoms, k-point mesh is necessary to obtain accurate results. In contrast, gamma-point calculations are sufficiently accurate for water molecules. In addition, we performed molecular dynamics (MD) simulations using these two models and compared the physical features such as atomic density profiles, radial distribution functions, and self-diffusion coefficients. It was found that although the NequIP model has higher accuracy than the DP model, the differences in the above physical features between them were not significant. Considering the stochasticity and complexity inherent in simulations, as well as the statistical averaging of physical characteristics, this motivates us to explore the meaning of accurately predicting atomic force in aligning the physical characteristics evolved by MD simulations with the actual physical features.

摘要

机器学习势(MLP)在各种化学系统中很有前景,但其复杂性和缺乏物理可解释性对其广泛应用构成挑战。本研究使用数值指标和物理特性评估了深度势(DP)和神经等变原子间势(NequIP)模型在石墨烯-水系统中的可转移性。我们发现,密度泛函理论计算得到的数据质量显著影响MLP的预测准确性。转移系统中的预测误差揭示了在异质石墨烯-水系统上进行量子化学计算的特殊性。即使对于具有非平面石墨烯碳原子的超胞,也需要使用k点网格才能获得准确结果。相比之下,对于水分子,伽马点计算就足够准确了。此外,我们使用这两个模型进行了分子动力学(MD)模拟,并比较了诸如原子密度分布、径向分布函数和自扩散系数等物理特征。结果发现,尽管NequIP模型比DP模型具有更高的准确性,但它们在上述物理特征上的差异并不显著。考虑到模拟中固有的随机性和复杂性,以及物理特征的统计平均,这促使我们探索在使MD模拟演化的物理特征与实际物理特征对齐时准确预测原子力的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验