Suppr超能文献

使用等变神经网络的可转移水势

Transferable Water Potentials Using Equivariant Neural Networks.

作者信息

Maxson Tristan, Szilvási Tibor

机构信息

Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States.

出版信息

J Phys Chem Lett. 2024 Apr 11;15(14):3740-3747. doi: 10.1021/acs.jpclett.4c00605. Epub 2024 Mar 28.

Abstract

Machine learning interatomic potentials (MLIPs) have emerged as a technique that promises quantum theory accuracy for reduced cost. It has been proposed [. , , 084111] that MLIPs trained on solely liquid water data cannot accurately transfer to the vapor-liquid equilibrium while recovering the many-body decomposition (MBD) analysis of gas-phase water clusters. This suggests that MLIPs do not directly learn the physically correct interactions of water molecules, limiting transferability. In this work, we show that MLIPs using equivariant architecture and trained on 3200 liquid water structures reproduces liquid-phase water properties (e.g., density within 0.003 g/cm between 230 and 365 K), vapor-liquid equilibrium properties up to 550 K, the MBD analysis of gas-phase water cluster up to six-body interactions, and the relative energy and the vibrational density of states of ice phases. We show that potentials developed using equivariant MLIPs allow transferability for arbitrary phases of water that remain stable in nanosecond long simulations.

摘要

机器学习原子间势(MLIPs)已成为一种有望以降低成本实现量子理论精度的技术。有人提出[.,, 084111],仅基于液态水数据训练的MLIPs在恢复气相水团簇的多体分解(MBD)分析时,无法准确转移到气液平衡状态。这表明MLIPs没有直接学习到水分子物理上正确的相互作用,从而限制了其可转移性。在这项工作中,我们表明,使用等变架构并基于3200个液态水结构进行训练的MLIPs能够再现液相水的性质(例如,在230至365 K之间密度在0.003 g/cm范围内)、高达550 K的气液平衡性质、高达六体相互作用的气相水团簇的MBD分析,以及冰相的相对能量和振动态密度。我们表明,使用等变MLIPs开发的势能够在纳秒级长时间模拟中保持稳定的任意水相实现可转移性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验