Suppr超能文献

通用机器学习势捕捉非局域电荷转移。

General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer.

机构信息

Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie, Tammannstraße 6, 37077 Göttingen, Germany.

Department of Physics, Universität Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland.

出版信息

Acc Chem Res. 2021 Feb 16;54(4):808-817. doi: 10.1021/acs.accounts.0c00689. Epub 2021 Jan 29.

Abstract

The development of first-principles-quality machine learning potentials (MLP) has seen tremendous progress, now enabling computer simulations of complex systems for which sufficiently accurate interatomic potentials have not been available. These advances and the increasing use of MLPs for more and more diverse systems gave rise to new questions regarding their applicability and limitations, which has constantly driven new developments. The resulting MLPs can be classified into several generations depending on the types of systems they are able to describe. First-generation MLPs, as introduced 25 years ago, have been applicable to low-dimensional systems such as small molecules. MLPs became a practical tool for complex systems in chemistry and materials science with the introduction of high-dimensional neural network potentials (HDNNP) in 2007, which represented the first MLP of the second generation. Second-generation MLPs are based on the concept of locality and express the total energy as a sum of environment-dependent atomic energies, which allows applications to very large systems containing thousands of atoms with linearly scaling computational costs. Since second-generation MLPs do not consider interactions beyond the local chemical environments, a natural extension has been the inclusion of long-range interactions without truncation, mainly electrostatics, employing environment-dependent charges establishing the third MLP generation. A variety of second- and, to some extent, also third-generation MLPs are currently the standard methods in ML-based atomistic simulations.In spite of countless successful applications, in recent years it has been recognized that the accuracy of MLPs relying on local atomic energies and charges is still insufficient for systems with long-ranged dependencies in the electronic structure. These can, for instance, result from nonlocal charge transfer or ionization and are omnipresent in many important types of systems and chemical processes such as the protonation and deprotonation of organic and biomolecules, redox reactions, and defects and doping in materials. In all of these situations, small local modifications can change the system globally, resulting in different equilibrium structures, charge distributions, and reactivity. These phenomena cannot be captured by second- and third-generation MLPs. Consequently, the inclusion of nonlocal phenomena has been identified as a next key step in the development of a new fourth generation of MLPs. While a first fourth-generation MLP, the charge equilibration neural network technique (CENT), was introduced in 2015, only very recently have a range of new general-purpose methods applicable to a broad range of physical scenarios emerged. In this Account, we show how fourth-generation HDNNPs can be obtained by combining the concepts of CENT and second-generation HDNNPs. These new MLPs allow for a highly accurate description of systems where nonlocal charge transfer is important.

摘要

第一性原理机器学习势(MLP)的发展取得了巨大的进展,现在可以对复杂系统进行计算机模拟,而这些系统以前没有足够准确的原子间势。这些进展以及越来越多的将 MLP 应用于越来越多样化的系统,引发了关于其适用性和局限性的新问题,这不断推动了新的发展。由此产生的 MLP 可以根据它们能够描述的系统类型分为几代。第一代 MLP 于 25 年前推出,适用于低维系统,如小分子。随着 2007 年高维神经网络势(HDNNP)的引入,MLP 成为化学和材料科学中复杂系统的实用工具,这代表了第二代的第一个 MLP。第二代 MLP 基于局部性的概念,将总能量表示为环境相关原子能量的总和,这允许应用于包含数千个原子的非常大的系统,并且计算成本呈线性扩展。由于第二代 MLP 不考虑超出局部化学环境的相互作用,因此自然的扩展是包含无截断的长程相互作用,主要是静电相互作用,使用环境相关的电荷来建立第三代 MLP。各种第二代,在某种程度上,第三代 MLP 目前是基于机器学习的原子模拟中的标准方法。尽管有无数成功的应用,但近年来人们已经认识到,依赖于局部原子能量和电荷的 MLP 的准确性对于电子结构中具有长程依赖性的系统仍然不足。这些可能例如来自非局部电荷转移或电离,并且存在于许多重要类型的系统和化学过程中,例如有机和生物分子的质子化和去质子化、氧化还原反应以及材料中的缺陷和掺杂。在所有这些情况下,小的局部修改都可以全局改变系统,导致不同的平衡结构、电荷分布和反应性。第二代和第三代 MLP 无法捕捉到这些现象。因此,已经确定包含非局部现象是开发新一代第四代 MLP 的下一步关键步骤。虽然第一代第四代 MLP,电荷平衡神经网络技术(CENT)于 2015 年推出,但直到最近,才出现了一系列适用于广泛物理场景的新通用方法。在本报告中,我们展示了如何通过结合 CENT 和第二代 HDNNP 的概念来获得第四代 HDNNP。这些新的 MLP 允许对非局部电荷转移很重要的系统进行高度准确的描述。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验