Baumann Matthias P, Denninger Anna F, Hafed Ziad M
Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
J Neurophysiol. 2025 Jan 1;133(1):85-100. doi: 10.1152/jn.00368.2024. Epub 2024 Nov 19.
We normally perceive a stable visual environment despite eye movements. To achieve such stability, visual processing integrates information across a given saccade, and laboratory hallmarks of such integration are robustly observed by presenting brief perisaccadic visual probes. In one classic phenomenon, probe locations are grossly mislocalized. This mislocalization is believed to depend, at least in part, on corollary discharge associated with saccade-related neuronal movement commands. However, we recently found that superior colliculus motor bursts, a known source of corollary discharge, can be different for different image appearances of the saccade target. Therefore, here we investigated whether perisaccadic mislocalization also depends on saccade target appearance. We asked human participants to generate saccades to either low (0.5 cycles/°) or high (5 cycles/°) spatial frequency gratings. We always placed a high-contrast target spot at grating center, to ensure matched saccades across image types. We presented a single, brief perisaccadic probe, which was high in contrast to avoid saccadic suppression, and the subjects pointed (via mouse cursor) at the seen probe location. We observed stronger perisaccadic mislocalization for low-spatial frequency saccade targets and for upper visual field probe locations. This was despite matched saccade metrics and kinematics across conditions, and it was also despite matched probe visibility for the different saccade target images (low vs. high spatial frequency). Assuming that perisaccadic visual mislocalization depends on corollary discharge, our results suggest that such discharge might relay more than just spatial saccade vectors to the visual system; saccade target visual features can also be transmitted. Brief visual probes are grossly mislocalized when presented in the temporal vicinity of saccades. Although the mechanisms of such mislocalization are still under investigation, one component of them could derive from corollary discharge signals associated with saccade movement commands. Here, we were motivated by the observation that superior colliculus movement bursts, one source of corollary discharge, vary with saccade target image appearance. If so, then perisaccadic mislocalization should also do so, which we confirmed.
尽管眼睛会运动,但我们通常能感知到一个稳定的视觉环境。为了实现这种稳定性,视觉处理会整合给定扫视过程中的信息,并且通过呈现短暂的扫视周边视觉探针,能有力地观察到这种整合的实验室特征。在一个经典现象中,探针位置会被严重错误定位。这种错误定位被认为至少部分取决于与扫视相关的神经元运动指令所关联的伴随放电。然而,我们最近发现,上丘运动爆发(一种已知的伴随放电源)对于扫视目标的不同图像外观可能会有所不同。因此,在这里我们研究了扫视周边错误定位是否也取决于扫视目标外观。我们要求人类参与者对低空间频率(0.5 周期/°)或高空间频率(5 周期/°)的光栅进行扫视。我们总是在光栅中心放置一个高对比度的目标点,以确保不同图像类型的扫视相匹配。我们呈现一个单一的、短暂的扫视周边探针,其对比度很高以避免扫视抑制,并且受试者通过鼠标光标指向所看到的探针位置。我们观察到,对于低空间频率的扫视目标和上视野探针位置,扫视周边错误定位更强。尽管不同条件下的扫视指标和运动学是匹配的,并且不同扫视目标图像(低空间频率与高空间频率)的探针可见性也是匹配的。假设扫视周边视觉错误定位取决于伴随放电,我们的结果表明,这种放电可能不仅仅向视觉系统传递空间扫视向量;扫视目标的视觉特征也可以被传递。当短暂的视觉探针在扫视的时间附近呈现时,会被严重错误定位。尽管这种错误定位的机制仍在研究中,但其一个组成部分可能源自与扫视运动指令相关的伴随放电信号。在这里,我们受到这样一个观察结果的启发,即上丘运动爆发(伴随放电的一个来源)会随着扫视目标图像外观而变化。如果是这样,那么扫视周边错误定位也应该如此,我们证实了这一点。