Institut für Chemie, Sekr. C7, Technische Universität Berlin, Straße des 17. Juni 115, Berlin D-10623, Germany.
Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, Berlin D-10623, Germany.
J Phys Chem B. 2024 Nov 28;128(47):11644-11657. doi: 10.1021/acs.jpcb.4c06419. Epub 2024 Nov 19.
A profound understanding of protein structure and mechanism requires dedicated experimental and theoretical tools to elucidate electrostatic and hydrogen bonding interactions in proteins. In this work, we employed an approach to disentangle noncovalent and hydrogen-bonding electric field changes during the reaction cascade of a multidomain protein, i.e., the phytochrome Agp2. The approach exploits the spectroscopic properties of nitrile probes commonly used as reporter groups of the vibrational Stark effect. These probes were introduced into the protein through site-specific incorporation of noncanonical amino acids resulting in four variants with different positions and orientations of the nitrile groups. All substitutions left structures and the reaction mechanism unchanged. Structural models of the dark states (Pfr) were used to evaluate the total electric field at the nitrile label and its transition dipole moment. These quantities served as an internal standard to calculate the respective properties of the photoinduced products (Lumi-F, Meta-F, and Pr) based on the relative intensities of the nitrile stretching bands. In most cases, the spectral analysis revealed two substates with a nitrile in a hydrogen-bonded or hydrophobic environment. Using frequencies and intensities, we managed to extract the noncovalent contribution of the electric field from the individual substates. This analysis resulted in profiles of the noncovalent and hydrogen-bond-related electric fields during the photoinduced reaction cascade of Agp2. These profiles, which vary significantly among the four variants due to the different positions and orientations of the nitrile probes, were discussed in the context of the molecular events along the Pfr → Pr reaction cascade.
深刻理解蛋白质结构和机制需要专门的实验和理论工具来阐明蛋白质中的静电和氢键相互作用。在这项工作中,我们采用了一种方法来解耦多域蛋白反应级联过程中非共价和氢键电场的变化,即光敏色素 Agp2。该方法利用了通常用作振动斯塔克效应报告基团的腈探针的光谱特性。这些探针通过非典型氨基酸的定点掺入引入到蛋白质中,从而产生四个具有不同位置和方向的腈基的变体。所有取代都不改变结构和反应机制。黑暗状态(Pfr)的结构模型用于评估腈标记的总电场及其跃迁偶极矩。这些量作为内部标准,用于根据腈伸缩带的相对强度计算光诱导产物(Lumi-F、Meta-F 和 Pr)的相应性质。在大多数情况下,光谱分析显示出两种亚态,其中腈处于氢键或疏水环境中。我们使用频率和强度成功地从各个亚态中提取出电场的非共价贡献。这种分析得到了 Agp2 光诱导反应级联过程中非共价和氢键相关电场的轮廓。由于腈探针的位置和方向不同,这四个变体之间的轮廓差异很大,这些轮廓在 Pfr → Pr 反应级联过程中的分子事件背景下进行了讨论。