Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany.
Freie Universität Berlin, Fachbereich für Physik, Arnimallee 14, D-14195 Berlin, Germany.
Biochemistry. 2021 Oct 12;60(40):2967-2977. doi: 10.1021/acs.biochem.1c00426. Epub 2021 Sep 27.
Phytochromes switch between a physiologically inactive and active state via a light-induced reaction cascade, which is initiated by isomerization of the tetrapyrrole chromophore and leads to the functionally relevant secondary structure transition of a protein segment (tongue). Although details of the underlying cause-effect relationships are not known, electrostatic fields are likely to play a crucial role in coupling chromophores and protein structural changes. Here, we studied local electric field changes during the photoconversion of the dark state Pfr to the photoactivated state Pr of the bathy phytochrome Agp2. Substituting Tyr165 and Phe192 in the chromophore pocket by -cyanophenylalanine (pCNF), we monitored the respective nitrile stretching modes in the various states of photoconversion (vibrational Stark effect). Resonance Raman and IR spectroscopic analyses revealed that both pCNF-substituted variants undergo the same photoinduced structural changes as wild-type Agp2. Based on a structural model for the Pfr state of F192pCNF, a molecular mechanical-quantum mechanical approach was employed to calculate the electric field at the nitrile group and the respective stretching frequency, in excellent agreement with the experiment. These calculations serve as a reference for determining the electric field changes in the photoinduced states of F192pCNF. Unlike F192pCNF, the nitrile group in Y165pCNF is strongly hydrogen bonded such that the theoretical approach is not applicable. However, in both variants, the largest changes of the nitrile stretching modes occur in the last step of the photoconversion, supporting the view that the proton-coupled restructuring of the tongue is accompanied by a change of the electric field.
光敏色素通过光诱导反应级联在生理上的非活性和活性状态之间切换,该反应级联由四吡咯发色团的异构化引发,并导致蛋白质片段(舌)的功能相关二级结构转变。虽然不知道潜在的因果关系的细节,但静电场很可能在偶联发色团和蛋白质结构变化中发挥关键作用。在这里,我们研究了深海光敏色素 Agp2 的黑暗状态 Pfr 向光激活状态 Pr 的光转化过程中局部电场的变化。通过在色团口袋中用 -氰基苯丙氨酸(pCNF)取代 Tyr165 和 Phe192,我们监测了光转化(振动斯塔克效应)的各种状态下的相应腈伸缩模式。共振拉曼和红外光谱分析表明,两种 pCNF 取代变体都经历了与野生型 Agp2 相同的光诱导结构变化。基于 F192pCNF 的 Pfr 状态的结构模型,采用分子力学-量子力学方法计算了腈基团的电场和相应的伸缩频率,与实验结果非常吻合。这些计算为确定 F192pCNF 的光诱导状态下的电场变化提供了参考。与 F192pCNF 不同,Y165pCNF 中的腈基团强烈氢键结合,因此理论方法不适用。然而,在这两种变体中,腈伸缩模式的最大变化发生在光转化的最后一步,这支持了这样的观点,即舌的质子偶联重构伴随着电场的变化。