Foote Michael B, White James Robert, Chatila Walid K, Argilés Guillem, Lu Steve, Rousseau Benoit, Artz Oliver, Johannet Paul, Walch Henry, Patel Mitesh, Lamendola-Essel Michelle F, Casadevall David, Abdelfattah Somer, Patel Shrey, Yaeger Rona, Cercek Andrea, Montagut Clara, Berger Michael, Schultz Nikolaus, Diaz Luis A
Division of Solid Tumor Oncology, Memorial Sloan Kettering, New York, New York.
Resphera Biosciences, Baltimore, Maryland.
Clin Cancer Res. 2025 Jan 17;31(2):376-386. doi: 10.1158/1078-0432.CCR-24-1583.
Mutational data from multiple solid and liquid biospecimens of a single patient are often integrated to track cancer evolution. However, there is no accepted framework to resolve if individual samples from the same individual share variants due to common identity versus coincidence.
Utilizing 8,000 patient tumors from The Cancer Genome Atlas across 33 cancer types, we estimated the background rates of co-occurrence of mutations between discrete pairs of samples across cancers and by cancer type. We developed a mutational profile similarity (MPS) score that uses a large background database to produce confidence estimates that two tumors share a unique, related molecular profile. The MPS algorithm was applied to randomly paired tumor profiles, including patients who underwent repeat solid tumor biopsies sequenced with Memorial Sloan Kettering-IMPACT (n = 53,113). We also evaluated the MPS in sample pairs from single patients with multiple cancers (n = 2,012), as well as patients with plasma and solid tumor variant profiles (n = 884 patients).
In unrelated tumors, nucleotide-specific variants are shared in 1.3% (cancer-type agnostic) and in 10% to 13% (cancer-type specific) of cases. The MPS method contextualized shared variants to specify whether patients had a single cancer versus multiple distinct cancers. When multiple tumors were compared from the same patient and an initial clinicopathologic diagnosis was discordant with molecular findings, the MPS anticipated future diagnosis changes in 28% of examined cases.
The use of a novel shared variant framework can provide information to clarify the molecular relationship between compared biospecimens with minimal required input.
来自单个患者的多个实体和液体生物样本的突变数据通常被整合起来以追踪癌症的演变。然而,对于来自同一个体的个体样本是由于共同身份还是巧合而共享变异,尚无公认的框架来解决。
利用来自癌症基因组图谱的8000例患者肿瘤,涵盖33种癌症类型,我们估计了不同癌症之间以及按癌症类型划分的离散样本对之间突变共发生的背景率。我们开发了一种突变谱相似性(MPS)评分,该评分使用一个大型背景数据库来生成关于两个肿瘤共享独特相关分子谱的置信度估计。MPS算法应用于随机配对的肿瘤谱,包括接受纪念斯隆凯特琳癌症中心-IMPACT测序的重复实体瘤活检的患者(n = 53,113)。我们还评估了MPS在来自患有多种癌症的单个患者的样本对(n = 2,012)以及患有血浆和实体瘤变异谱的患者(n = 884例患者)中的情况。
在不相关的肿瘤中,核苷酸特异性变异在1.3%(不考虑癌症类型)和10%至13%(特定癌症类型)的病例中共享。MPS方法将共享变异置于具体情境中,以确定患者是患有单一癌症还是多种不同癌症。当比较来自同一患者的多个肿瘤且初始临床病理诊断与分子结果不一致时,MPS在28%的检查病例中预测了未来的诊断变化。
使用一种新颖的共享变异框架可以提供信息,以最少的所需输入来阐明所比较的生物样本之间的分子关系。