Suppr超能文献

术中使用人工智能的受激拉曼组织学成像系统进行无标记组织诊断:初步经验。

Intraoperative label-free tissue diagnostics using a stimulated Raman histology imaging system with artificial intelligence: An initial experience.

机构信息

Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany; Faculty of Medicine, Heidelberg University, Heidelberg, Germany.

Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany; Faculty of Medicine, Heidelberg University, Heidelberg, Germany.

出版信息

Clin Neurol Neurosurg. 2024 Dec;247:108646. doi: 10.1016/j.clineuro.2024.108646. Epub 2024 Nov 17.

Abstract

BACKGROUND

Accurate intraoperative tissue diagnostics could impact on decision making regarding the extent of resection (EOR) during brain tumor surgery. Stimulated Raman histology (SRH) is a label-free optical imaging method that uses different biochemical properties of tissue to generate a hematoxylin-eosin-like image and, in combination with an artificial intelligence-based image classifier, offers the opportunity to obtain rapid intraoperative tissue diagnoses.

OBJECTIVE

The goal of this study was to report on our initial experience with SRH to evaluate its accuracy in comparison to final tissue diagnosis.

MATERIALS & METHODS: We evaluated 70 consecutive adult cases with brain tumors. We compared results of the three different SRH classifier (diagnostic, molecular and tumor/non-tumor) to the respective final histopathological result. Similarly, we evaluated the isocitrate dehydrogenase (IDH) mutations in 18 patients using SRH. Lastly, we compared SRH results of samples taken from the tumor margins with early postoperative MRI. Prediction accuracy was evaluated by logistic regression and Receiver Operator Curve (ROC) analysis.

RESULTS

We included 19 gliomas, 9 metastases, 22 meningiomas and 14 other tumor entities. Regarding accuracy of intraoperative SRH predictions, regression analysis showed an Area Under the Curve (AUC) of 0.77 (95 % C.I. 0.64-0.89, p = 0.0008), suggesting agreement of predictions with final diagnosis. For specific tumor entities, variable accuracies were observed: The highest accuracy was obtained for meningiomas followed by high-grade glioma. IDH mutations were predicted with an AUC of 0.93 (95 % C.I. 0.88-0.98; p < 0.0001). The SRH examination of tissue samples from tumor margins corresponded with postoperative MRI in 4 out of 5 cases.

CONCLUSION

Our initial experience with SRH shows that this novel imaging technique is a promising approach to obtain rapid intraoperative tissue diagnosis to guide surgical decision making based on histology and cell-density. With further refinement of AI-based automated image classification and a better integration into the surgical workflow, prediction accuracy and reliability could be improved.

摘要

背景

术中准确的组织诊断可能会影响脑肿瘤手术中切除范围(EOR)的决策。受激拉曼组织学(SRH)是一种无标记的光学成像方法,它利用组织的不同生化特性生成类似于苏木精-伊红的图像,并结合基于人工智能的图像分类器,有机会获得快速的术中组织诊断。

目的

本研究旨在报告我们使用 SRH 的初步经验,以比较其与最终组织诊断的准确性。

材料与方法

我们评估了 70 例连续的成年脑肿瘤患者。我们将三种不同的 SRH 分类器(诊断、分子和肿瘤/非肿瘤)的结果与相应的最终组织学结果进行比较。同样,我们在 18 例患者中使用 SRH 检测异柠檬酸脱氢酶(IDH)突变。最后,我们比较了取自肿瘤边缘的样本的 SRH 结果与早期术后 MRI。通过逻辑回归和接收器操作特征曲线(ROC)分析评估预测准确性。

结果

我们纳入了 19 例胶质瘤、9 例转移瘤、22 例脑膜瘤和 14 例其他肿瘤实体。关于术中 SRH 预测的准确性,回归分析显示曲线下面积(AUC)为 0.77(95%置信区间 0.64-0.89,p = 0.0008),表明预测与最终诊断一致。对于特定的肿瘤实体,观察到不同的准确性:脑膜瘤的准确性最高,其次是高级别胶质瘤。IDH 突变的预测 AUC 为 0.93(95%置信区间 0.88-0.98;p < 0.0001)。在 5 例中有 4 例,肿瘤边缘组织样本的 SRH 检查与术后 MRI 相符。

结论

我们使用 SRH 的初步经验表明,这种新的成像技术是一种很有前途的方法,可以快速获得术中组织诊断,从而根据组织学和细胞密度指导手术决策。随着基于人工智能的自动图像分类的进一步改进和更好地整合到手术流程中,预测的准确性和可靠性可以得到提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验