Suppr超能文献

利用全基因组关联研究以更好地理解癌症的病因。

Leveraging genome-wide association studies to better understand the etiology of cancers.

作者信息

Sonehara Kyuto, Okada Yukinori

机构信息

Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.

出版信息

Cancer Sci. 2025 Feb;116(2):288-296. doi: 10.1111/cas.16402. Epub 2024 Nov 19.

Abstract

Genome-wide association studies (GWAS) statistically assess the association between tens of millions of genetic variants in the whole genome and a phenotype of interest. Genome-wide association studies enable the elucidation of polygenic inheritance of cancer, in which myriad low-penetrance genetic variants collectively contribute to a substantial proportion of the heritable susceptibility. In addition to the robust genotype-phenotype associations provided by GWAS, combining GWAS data with functional genomic datasets or sophisticated statistical genetic methods unlocks deeper insights. Integrating genotype and molecular phenotyping data facilitates functional characterization of GWAS association signals through molecular quantitative trait loci mapping and transcriptome-wide association studies. Furthermore, aggregating genome-wide polygenic signals, including subthreshold associations, enables one to estimate genetic correlations across diverse phenotypes and helps in clinical risk predictions by evaluating polygenic risk scores. In this review, we begin by summarizing the rationale for GWAS of cancer, introduce recent methodological updates in the GWAS-derived downstream analyses, and demonstrate their applications to GWAS of cancers.

摘要

全基因组关联研究(GWAS)通过统计学方法评估全基因组中数以千万计的遗传变异与感兴趣的表型之间的关联。全基因组关联研究有助于阐明癌症的多基因遗传,其中无数低 penetrance 遗传变异共同构成了相当比例的遗传易感性。除了 GWAS 提供的强大基因型-表型关联外,将 GWAS 数据与功能基因组数据集或复杂的统计遗传方法相结合,可以获得更深入的见解。整合基因型和分子表型数据有助于通过分子数量性状位点定位和全转录组关联研究对 GWAS 关联信号进行功能表征。此外,汇总全基因组多基因信号,包括亚阈值关联,能够估计不同表型之间的遗传相关性,并通过评估多基因风险评分帮助进行临床风险预测。在本综述中,我们首先总结癌症 GWAS 的基本原理,介绍 GWAS 衍生的下游分析中最近的方法更新,并展示它们在癌症 GWAS 中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/841d/11786324/b9fe4443608f/CAS-116-288-g005.jpg

相似文献

1
Leveraging genome-wide association studies to better understand the etiology of cancers.
Cancer Sci. 2025 Feb;116(2):288-296. doi: 10.1111/cas.16402. Epub 2024 Nov 19.
2
Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome.
Circulation. 2020 Jul 28;142(4):324-338. doi: 10.1161/CIRCULATIONAHA.120.045956. Epub 2020 May 20.
3
Integrating transcriptomic and polygenic risk scores to enhance predictive accuracy for ischemic stroke subtypes.
Hum Genet. 2025 Jan;144(1):43-54. doi: 10.1007/s00439-024-02717-7. Epub 2024 Nov 18.
5
A practical view of fine-mapping and gene prioritization in the post-genome-wide association era.
Open Biol. 2020 Jan;10(1):190221. doi: 10.1098/rsob.190221. Epub 2020 Jan 15.
7
Leveraging lung tissue transcriptome to uncover candidate causal genes in COPD genetic associations.
Hum Mol Genet. 2018 May 15;27(10):1819-1829. doi: 10.1093/hmg/ddy091.
8
Non-parametric Polygenic Risk Prediction via Partitioned GWAS Summary Statistics.
Am J Hum Genet. 2020 Jul 2;107(1):46-59. doi: 10.1016/j.ajhg.2020.05.004. Epub 2020 May 28.
10
Variable prediction accuracy of polygenic scores within an ancestry group.
Elife. 2020 Jan 30;9:e48376. doi: 10.7554/eLife.48376.

引用本文的文献

1
Establishing Best Practices for Clinical GWAS: Tackling Imputation and Data Quality Challenges.
Int J Mol Sci. 2025 Jul 3;26(13):6397. doi: 10.3390/ijms26136397.

本文引用的文献

2
Body mass index stratification optimizes polygenic prediction of type 2 diabetes in cross-biobank analyses.
Nat Genet. 2024 Jun;56(6):1100-1109. doi: 10.1038/s41588-024-01782-y. Epub 2024 Jun 11.
3
Refining the impact of genetic evidence on clinical success.
Nature. 2024 May;629(8012):624-629. doi: 10.1038/s41586-024-07316-0. Epub 2024 Apr 17.
5
Polygenic prediction across populations is influenced by ancestry, genetic architecture, and methodology.
Cell Genom. 2023 Sep 14;3(10):100408. doi: 10.1016/j.xgen.2023.100408. eCollection 2023 Oct 11.
6
Plasma proteomic associations with genetics and health in the UK Biobank.
Nature. 2023 Oct;622(7982):329-338. doi: 10.1038/s41586-023-06592-6. Epub 2023 Oct 4.
7
Personalized medicine with germline pathogenic variants: Importance of population- and region-wide evidence.
Cancer Sci. 2023 Oct;114(10):3816-3824. doi: 10.1111/cas.15922. Epub 2023 Aug 2.
10
Single-cell analyses and host genetics highlight the role of innate immune cells in COVID-19 severity.
Nat Genet. 2023 May;55(5):753-767. doi: 10.1038/s41588-023-01375-1. Epub 2023 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验