Child Mind Institute, Autism Center, New York, NY, USA.
Child Mind Institute, Center for Data Analytics, Innovation, and Rigor, New York, NY, USA.
Adv Neurobiol. 2024;40:511-544. doi: 10.1007/978-3-031-69491-2_18.
The promise of individually tailored care for autism has driven efforts to establish biomarkers. This chapter appraises the state of precision-medicine research focused on biomarkers based on the functional brain connectome. This work is grounded on abundant evidence supporting the brain dysconnection model of autism and the advantages of resting-state functional MRI (R-fMRI) for studying the brain in vivo. After considering biomarker requirements of consistency and clinical relevance, we provide a scoping review of R-fMRI studies of individual prediction in autism. In the past 10 years, responding to the availability of open data through the Autism Brain Imaging Data Exchange, machine learning studies have surged. Nearly all have focused on diagnostic label classification. These efforts have shown that autism prediction is feasible using functional connectome markers, with accuracy reported well above chance. In parallel, emerging approaches more directly addressing autism heterogeneity are paving the way for much-needed biomarkers of longitudinal outcome and treatment response. We conclude with key challenges to be addressed by the next generation of studies.
自闭症个体化治疗的前景推动了生物标志物的研究。本章评估了基于功能脑连接组学的精准医学研究的现状。这项工作的基础是大量支持自闭症大脑连接异常模型的证据,以及静息态功能磁共振成像(R-fMRI)在研究活体大脑方面的优势。在考虑了生物标志物的一致性和临床相关性的要求之后,我们对自闭症个体预测的 R-fMRI 研究进行了范围性综述。在过去的 10 年中,通过自闭症脑成像数据交换(Autism Brain Imaging Data Exchange)提供的开放数据,机器学习研究如雨后春笋般涌现。几乎所有的研究都集中在诊断标签分类上。这些研究表明,使用功能连接组学标志物进行自闭症预测是可行的,其准确性远远超过了随机水平。与此同时,新兴的方法更直接地解决自闭症的异质性问题,为急需的纵向结局和治疗反应的生物标志物铺平了道路。最后,我们总结了下一代研究需要解决的关键挑战。
Biol Psychiatry. 2022-10-15
Mol Autism. 2024-9-11
Neuroimage. 2024-3
JAMA. 2023-1-10
Am J Psychiatry. 2023-1-1
Science. 2022-11-4
Nat Commun. 2022-6-29