Suppr超能文献

自闭症和注意缺陷多动障碍的脑生物标志物研究进展与障碍。

Progress and roadblocks in the search for brain-based biomarkers of autism and attention-deficit/hyperactivity disorder.

机构信息

Department of Psychology, University of Miami, Coral Gables, FL, USA.

Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA.

出版信息

Transl Psychiatry. 2017 Aug 22;7(8):e1218. doi: 10.1038/tp.2017.164.

Abstract

Children with neurodevelopmental disorders benefit most from early interventions and treatments. The development and validation of brain-based biomarkers to aid in objective diagnosis can facilitate this important clinical aim. The objective of this review is to provide an overview of current progress in the use of neuroimaging to identify brain-based biomarkers for autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), two prevalent neurodevelopmental disorders. We summarize empirical work that has laid the foundation for using neuroimaging to objectively quantify brain structure and function in ways that are beginning to be used in biomarker development, noting limitations of the data currently available. The most successful machine learning methods that have been developed and applied to date are discussed. Overall, there is increasing evidence that specific features (for example, functional connectivity, gray matter volume) of brain regions comprising the salience and default mode networks can be used to discriminate ASD from typical development. Brain regions contributing to successful discrimination of ADHD from typical development appear to be more widespread, however there is initial evidence that features derived from frontal and cerebellar regions are most informative for classification. The identification of brain-based biomarkers for ASD and ADHD could potentially assist in objective diagnosis, monitoring of treatment response and prediction of outcomes for children with these neurodevelopmental disorders. At present, however, the field has yet to identify reliable and reproducible biomarkers for these disorders, and must address issues related to clinical heterogeneity, methodological standardization and cross-site validation before further progress can be achieved.

摘要

患有神经发育障碍的儿童最受益于早期干预和治疗。开发和验证基于大脑的生物标志物以辅助客观诊断可以促进这一重要的临床目标。本综述的目的是提供当前使用神经影像学来识别自闭症谱系障碍 (ASD) 和注意力缺陷/多动障碍 (ADHD) 的基于大脑的生物标志物的进展概述,这两种疾病是常见的神经发育障碍。我们总结了为使用神经影像学客观量化大脑结构和功能奠定基础的实证工作,这些工作开始用于生物标志物开发,并注意到目前可用数据的局限性。讨论了迄今为止开发和应用的最成功的机器学习方法。总的来说,越来越多的证据表明,包括突显和默认模式网络在内的大脑区域的特定特征(例如,功能连接、灰质体积)可用于区分 ASD 与典型发育。有助于区分 ADHD 与典型发育的大脑区域似乎更为广泛,但是有初步证据表明,源自额叶和小脑区域的特征对分类最有信息。ASD 和 ADHD 的基于大脑的生物标志物的鉴定可能有助于客观诊断、治疗反应监测和这些神经发育障碍儿童结局的预测。然而,目前该领域尚未为这些疾病确定可靠和可重复的生物标志物,并且必须解决与临床异质性、方法学标准化和跨站点验证相关的问题,然后才能取得进一步进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706e/5611731/0407427663ca/tp2017164f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验