Suppr超能文献

自闭症谱系障碍儿童的白质连接体边缘密度:基于机器学习模型的潜在影像生物标志物。

White Matter Connectome Edge Density in Children with Autism Spectrum Disorders: Potential Imaging Biomarkers Using Machine-Learning Models.

机构信息

1 Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California.

2 Department of Radiology, University of Washington, Seattle, Washington.

出版信息

Brain Connect. 2019 Mar;9(2):209-220. doi: 10.1089/brain.2018.0658.

Abstract

Prior neuroimaging studies have reported white matter network underconnectivity as a potential mechanism for autism spectrum disorder (ASD). In this study, we examined the structural connectome of children with ASD using edge density imaging (EDI), and then applied machine-learning algorithms to identify children with ASD based on tract-based connectivity metrics. Boys aged 8-12 years were included: 14 with ASD and 33 typically developing children. The edge density (ED) maps were computed from probabilistic streamline tractography applied to high angular resolution diffusion imaging. Tract-based spatial statistics was used for voxel-wise comparison and coregistration of ED maps in addition to conventional diffusion tensor imaging (DTI) metrics of fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD). Tract-based average DTI/connectome metrics were calculated and used as input for different machine-learning models: naïve Bayes, random forest, support vector machines (SVMs), and neural networks. For these models, cross-validation was performed with stratified random sampling ( × 1,000 permutations). The average accuracy among validation samples was calculated. In voxel-wise analysis, the body and splenium of corpus callosum, bilateral superior and posterior corona radiata, and left superior longitudinal fasciculus showed significantly lower ED in children with ASD; whereas, we could not find significant difference in FA, MD, and RD maps between the two study groups. Overall, machine-learning models using tract-based ED metrics had better performance in identification of children with ASD compared with those using FA, MD, and RD. The EDI-based random forest models had greater average accuracy (75.3%), specificity (97.0%), and positive predictive value (81.5%), whereas EDI-based polynomial SVM had greater sensitivity (51.4%) and negative predictive values (77.7%). In conclusion, we found reduced density of connectome edges in the posterior white matter tracts of children with ASD, and demonstrated the feasibility of connectome-based machine-learning algorithms in identification of children with ASD.

摘要

先前的神经影像学研究报告称,自闭症谱系障碍(ASD)患者的白质网络连接不足是其潜在机制。在这项研究中,我们使用边缘密度成像(EDI)检查了 ASD 儿童的结构连接组,并应用机器学习算法根据基于束流的连通性度量来识别 ASD 儿童。纳入年龄在 8-12 岁的男孩:14 名 ASD 儿童和 33 名典型发育儿童。从应用于高角度分辨率扩散成像的概率流线追踪中计算出边缘密度(ED)图。除了传统的各向异性分数(FA)、平均扩散度(MD)和径向扩散度(RD)的扩散张量成像(DTI)度量外,束流空间统计学还用于体素水平比较和 ED 图的配准。计算了基于束流的平均 DTI/连接组度量,并将其用作不同机器学习模型(朴素贝叶斯、随机森林、支持向量机(SVM)和神经网络)的输入。对于这些模型,采用分层随机抽样( × 1000 次排列)进行交叉验证。计算验证样本的平均准确率。在体素水平分析中,与对照组相比,ASD 儿童的胼胝体体部和压部、双侧额顶放射冠以及左侧上纵束的 ED 明显降低;然而,我们没有发现两组之间 FA、MD 和 RD 图的显著差异。总体而言,与 FA、MD 和 RD 相比,基于束流 ED 度量的机器学习模型在识别 ASD 儿童方面具有更好的性能。基于 EDI 的随机森林模型具有更高的平均准确率(75.3%)、特异性(97.0%)和阳性预测值(81.5%),而基于 EDI 的多项式 SVM 具有更高的灵敏度(51.4%)和阴性预测值(77.7%)。总之,我们发现 ASD 儿童的后白质束的连接组边缘密度降低,并证明了基于连接组的机器学习算法在识别 ASD 儿童方面的可行性。

相似文献

3
White Matter Connectome Correlates of Auditory Over-Responsivity: Edge Density Imaging and Machine-Learning Classifiers.
Front Integr Neurosci. 2019 Mar 29;13:10. doi: 10.3389/fnint.2019.00010. eCollection 2019.
4
Age-dependent white matter microstructural disintegrity in autism spectrum disorder.
Front Neurosci. 2022 Sep 7;16:957018. doi: 10.3389/fnins.2022.957018. eCollection 2022.
6
Association of White Matter Structure With Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder.
JAMA Psychiatry. 2017 Nov 1;74(11):1120-1128. doi: 10.1001/jamapsychiatry.2017.2573.
8
Tract-specific analyses of diffusion tensor imaging show widespread white matter compromise in autism spectrum disorder.
J Child Psychol Psychiatry. 2011 Mar;52(3):286-95. doi: 10.1111/j.1469-7610.2010.02342.x. Epub 2010 Nov 12.
9
[Structural change of the corpus callosum fibers in toddlers with autism spectrum disorder: two-year follow-up].
Zhonghua Er Ke Za Zhi. 2017 Dec 2;55(12):920-925. doi: 10.3760/cma.j.issn.0578-1310.2017.12.011.
10
White matter compromise in autism? Differentiating motion confounds from true differences in diffusion tensor imaging.
Autism Res. 2017 Oct;10(10):1606-1620. doi: 10.1002/aur.1807. Epub 2017 May 15.

引用本文的文献

1
Classification accuracy of structural and functional connectomes across different depressive phenotypes.
Imaging Neurosci (Camb). 2024 Jan 17;2. doi: 10.1162/imag_a_00064. eCollection 2024.
2
Brain White Matter Alterations in Young Adults with Childhood Emotional Neglect Experience.
Behav Sci (Basel). 2025 May 28;15(6):746. doi: 10.3390/bs15060746.
3
Unsupervised Dimensionality Reduction Techniques for the Assessment of ASD Biomarkers.
Pac Symp Biocomput. 2025;30:614-630. doi: 10.1142/9789819807024_0044.
4
Artificial intelligence role in advancement of human brain connectome studies.
Front Neuroinform. 2024 Sep 20;18:1399931. doi: 10.3389/fninf.2024.1399931. eCollection 2024.
6
The diagnosis of ASD with MRI: a systematic review and meta-analysis.
Transl Psychiatry. 2024 Aug 2;14(1):318. doi: 10.1038/s41398-024-03024-5.
7
Artificial Intelligence in Pediatric Emergency Medicine: Applications, Challenges, and Future Perspectives.
Biomedicines. 2024 May 30;12(6):1220. doi: 10.3390/biomedicines12061220.
8
Autism spectrum disorder-specific changes in white matter connectome edge density based on functionally defined nodes.
Front Neurosci. 2023 Nov 23;17:1285396. doi: 10.3389/fnins.2023.1285396. eCollection 2023.
9
A face image classification method of autistic children based on the two-phase transfer learning.
Front Psychol. 2023 Aug 31;14:1226470. doi: 10.3389/fpsyg.2023.1226470. eCollection 2023.
10
Role of Artificial Intelligence for Autism Diagnosis Using DTI and fMRI: A Survey.
Biomedicines. 2023 Jun 29;11(7):1858. doi: 10.3390/biomedicines11071858.

本文引用的文献

1
Cortical parcellation based on structural connectivity: A case for generative models.
Neuroimage. 2018 Jun;173:592-603. doi: 10.1016/j.neuroimage.2018.01.077. Epub 2018 Jan 31.
2
Genetics of autism spectrum disorder.
Handb Clin Neurol. 2018;147:321-329. doi: 10.1016/B978-0-444-63233-3.00021-X.
3
Disrupted focal white matter integrity in autism spectrum disorder: A voxel-based meta-analysis of diffusion tensor imaging studies.
Prog Neuropsychopharmacol Biol Psychiatry. 2018 Mar 2;82:242-248. doi: 10.1016/j.pnpbp.2017.11.007. Epub 2017 Nov 9.
4
Association of White Matter Structure With Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder.
JAMA Psychiatry. 2017 Nov 1;74(11):1120-1128. doi: 10.1001/jamapsychiatry.2017.2573.
5
Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease.
PLoS Comput Biol. 2017 Jun 22;13(6):e1005550. doi: 10.1371/journal.pcbi.1005550. eCollection 2017 Jun.
6
White matter microstructure in children with autistic traits.
Psychiatry Res Neuroimaging. 2017 May 30;263:127-134. doi: 10.1016/j.pscychresns.2017.03.015. Epub 2017 Mar 28.
7
Candidate Biomarkers in Children with Autism Spectrum Disorder: A Review of MRI Studies.
Neurosci Bull. 2017 Apr;33(2):219-237. doi: 10.1007/s12264-017-0118-1. Epub 2017 Mar 10.
8
HIgh b-value and high Resolution Integrated Diffusion (HIBRID) imaging.
Neuroimage. 2017 Apr 15;150:162-176. doi: 10.1016/j.neuroimage.2017.02.002. Epub 2017 Feb 7.
9
Machine Learning Applied to Alzheimer Disease.
Radiology. 2016 Dec;281(3):665-668. doi: 10.1148/radiol.2016162151.
10
White Matter Diffusion of Major Fiber Tracts Implicated in Autism Spectrum Disorder.
Brain Connect. 2016 Nov;6(9):691-699. doi: 10.1089/brain.2016.0442. Epub 2016 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验