Suppr超能文献

一种用于预测异质白种人群骨骼肌质量的新人体测量方程的开发与验证。

Development and validation of a new anthropometric equation to predict skeletal muscle mass in a heterogeneous caucasian population.

作者信息

Rojano-Ortega Daniel, Moya-Amaya Heliodoro, Molina-López Antonio, Berral-Aguilar Antonio Jesús, Berral-de la Rosa Francisco José

机构信息

CTS-595 Research Group, Department of Informatics and Sports, Universidad Pablo de Olavide, Carretera de Utrera km 1, 41013, Sevilla, Spain.

Department of Nutrition of Udinese Calcio, Udine, Italy.

出版信息

Sci Rep. 2024 Nov 19;14(1):28646. doi: 10.1038/s41598-024-77965-8.

Abstract

Assessment of skeletal muscle mass (SMM) is essential to monitor physical performance and health status. The most widely used anthropometric equations have repeatedly demonstrated to overestimate or underestimate SMM in different populations. Herein, we developed and cross-validated a new anthropometric regression equation for estimating SMM, using dual-energy X-ray absorptiometry (DXA) as the reference method. A group of 206 healthy Caucasian participants aged 18-65 years were included in the final analysis. Participants underwent a DXA scan, and body mass, stature, four skinfolds (biceps, triceps, subscapular, and supracrestal) and four breadths (femoral, humeral, ankle, and wrist) were assessed by an accredited anthropometrist. Accuracy was assessed by mean differences, coefficient of determination, standard error of the estimate (SEE), concordance correlation coefficient (CCC), and Bland-Altman plots. The proposed equation explained 91.3% of the variance in the DXA-derived SMM percentage, with a low random error (SEE = 1.95%), and a very strong agreement (CCC = 0.94). In addition, it demonstrated no fixed or proportional bias and a relatively low individual variability (3.84%). The new anthropometric equation can accurately predict SMM percentage in a Caucasian population with a wide age range (18-65 years).

摘要

评估骨骼肌质量(SMM)对于监测身体机能和健康状况至关重要。最常用的人体测量学方程多次证明在不同人群中高估或低估了SMM。在此,我们开发并交叉验证了一个用于估算SMM的新人体测量回归方程,使用双能X线吸收法(DXA)作为参考方法。最终分析纳入了一组206名年龄在18 - 65岁的健康白种人参与者。参与者接受了DXA扫描,一名经认可的人体测量师评估了体重、身高、四处皮褶厚度(肱二头肌、肱三头肌、肩胛下和髂嵴上)以及四处宽度(股骨、肱骨、脚踝和手腕)。通过平均差异、决定系数、估计标准误差(SEE)、一致性相关系数(CCC)和布兰德 - 奥特曼图评估准确性。所提出的方程解释了DXA得出的SMM百分比中91.3%的方差,随机误差较低(SEE = 1.95%),且一致性非常强(CCC = 0.94)。此外,它没有显示出固定或比例偏差,个体变异性相对较低(3.84%)。新的人体测量方程能够准确预测年龄范围较广(18 - 65岁)的白种人群体中的SMM百分比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09af/11576900/51bac03d02ab/41598_2024_77965_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验