Suppr超能文献

基于双能 X 射线吸收法人体成分模型的四肢骨骼肌总量和部位预测。

Total and regional appendicular skeletal muscle mass prediction from dual-energy X-ray absorptiometry body composition models.

机构信息

Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.

Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, USA.

出版信息

Sci Rep. 2023 Feb 14;13(1):2590. doi: 10.1038/s41598-023-29827-y.

Abstract

Sarcopenia, sarcopenic obesity, frailty, and cachexia have in common skeletal muscle (SM) as a main component of their pathophysiology. The reference method for SM mass measurement is whole-body magnetic resonance imaging (MRI), although dual-energy X-ray absorptiometry (DXA) appendicular lean mass (ALM) serves as an affordable and practical SM surrogate. Empirical equations, developed on relatively small and diverse samples, are now used to predict total body SM from ALM and other covariates; prediction models for extremity SM mass are lacking. The aim of the current study was to develop and validate total body, arm, and leg SM mass prediction equations based on a large sample (N = 475) of adults evaluated with whole-body MRI and DXA for SM and ALM, respectively. Initial models were fit using ordinary least squares stepwise selection procedures; covariates beyond extremity lean mass made only small contributions to the final models that were developed using Deming regression. All three developed final models (total, arm, and leg) had high Rs (0.88-0.93; all p < 0.001) and small root-mean square errors (1.74, 0.41, and 0.95 kg) with no bias in the validation sample (N = 95). The new total body SM prediction model (SM = 1.12 × ALM - 0.63) showed good performance, with some bias, against previously reported DXA-ALM prediction models. These new total body and extremity SM prediction models, developed and validated in a large sample, afford an important and practical opportunity to evaluate SM mass in research and clinical settings.

摘要

肌肉减少症、肌少症合并肥胖症、虚弱和恶病质都以骨骼肌(SM)作为其病理生理学的主要组成部分。SM 质量测量的参考方法是全身磁共振成像(MRI),尽管双能 X 射线吸收法(DXA)四肢瘦体重(ALM)可作为一种经济实惠且实用的 SM 替代方法。目前,使用经验公式根据相对较小且多样化的样本预测全身 SM 与 ALM 及其他协变量的关系,缺乏针对肢体 SM 质量的预测模型。本研究旨在开发和验证基于大量(N=475)成人的全身 MRI 和 DXA 分别评估的 SM 和 ALM 的全身、手臂和腿部 SM 质量预测方程。最初的模型使用普通最小二乘法逐步选择程序进行拟合;除肢体瘦体重外,其他协变量对最终模型的贡献很小,最终模型使用 Deming 回归开发。所开发的三个最终模型(全身、手臂和腿部)均具有较高的 R2 值(0.88-0.93;均 P<0.001)和较小的均方根误差(1.74、0.41 和 0.95 千克),验证样本(N=95)无偏差。新的全身 SM 预测模型(SM=1.12×ALM-0.63)表现出良好的性能,与之前报道的 DXA-ALM 预测模型相比,存在一定的偏差。这些在大样本中开发和验证的新全身和肢体 SM 预测模型为在研究和临床环境中评估 SM 质量提供了重要且实用的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3175/9929067/211b8943d9b5/41598_2023_29827_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验