Department of Microbiology, Radboud University, Nijmegen, The Netherlands.
Department Chemie, Ludwig-Maximilians-Universität München, Munich, Germany.
mBio. 2021 Oct 26;12(5):e0170821. doi: 10.1128/mBio.01708-21. Epub 2021 Sep 21.
The methane-oxidizing bacterium Methylacidimicrobium thermophilum AP8 thrives in acidic geothermal ecosystems that are characterized by high degassing of methane (CH), H, HS, and by relatively high lanthanide concentrations. Lanthanides (atomic numbers 57 to 71) are essential in a variety of high-tech devices, including mobile phones. Remarkably, the same elements are actively taken up by methanotrophs/methylotrophs in a range of environments, since their XoxF-type methanol dehydrogenases require lanthanides as a metal cofactor. Lanthanide-dependent enzymes seem to prefer the lighter lanthanides (lanthanum, cerium, praseodymium, and neodymium), as slower methanotrophic/methylotrophic growth is observed in medium supplemented with only heavier lanthanides. Here, we purified XoxF1 from the thermoacidophilic methanotroph Methylacidimicrobium thermophilum AP8, which was grown in medium supplemented with neodymium as the sole lanthanide. The neodymium occupancy of the enzyme is 94.5% ± 2.0%, and through X-ray crystallography, we reveal that the structure of the active site shows interesting differences from the active sites of other methanol dehydrogenases, such as an additional aspartate residue in close proximity to the lanthanide. Nd-XoxF1 oxidizes methanol at a maximum rate of metabolism () of 0.15 ± 0.01 μmol · min · mg protein and an affinity constant () of 1.4 ± 0.6 μM. The structural analysis of this neodymium-containing XoxF1-type methanol dehydrogenase will expand our knowledge in the exciting new field of lanthanide biochemistry. Lanthanides comprise a group of 15 elements with atomic numbers 57 to 71 that are essential in a variety of high-tech devices, such as mobile phones, but were considered biologically inert for a long time. The biological relevance of lanthanides became evident when the acidophilic methanotroph Methylacidiphilum fumariolicum SolV, isolated from a volcanic mud pot, could only grow when lanthanides were supplied to the growth medium. We expanded knowledge in the exciting and rapidly developing field of lanthanide biochemistry by the purification and characterization of a neodymium-containing methanol dehydrogenase from a thermoacidophilic methanotroph.
产甲烷菌嗜酸热甲基微菌 AP8 生长在以甲烷 (CH)、H、HS 大量排放和相对较高的镧系元素浓度为特征的酸性地热生态系统中。镧系元素(原子序数 57 至 71)在各种高科技设备中都是必不可少的,包括手机。值得注意的是,由于其 XoxF 型甲醇脱氢酶需要镧系元素作为金属辅因子,因此在各种环境中,甲烷营养菌/甲基营养菌都会主动摄取这些元素。依赖镧系元素的酶似乎更喜欢较轻的镧系元素(镧、铈、镨和钕),因为在仅用较重的镧系元素补充的培养基中,甲烷营养菌/甲基营养菌的生长速度会变慢。在这里,我们从在补充钕作为唯一镧系元素的培养基中生长的嗜热嗜酸甲烷营养菌甲基微菌中纯化了 XoxF1。该酶的酶结合钕的量为 94.5%±2.0%,通过 X 射线晶体学,我们揭示了活性位点的结构与其他甲醇脱氢酶的活性位点有有趣的不同,例如在靠近镧系元素的位置有一个额外的天冬氨酸残基。Nd-XoxF1 以 0.15±0.01μmol·min·mg 蛋白的最大代谢率 () 和 1.4±0.6μM 的亲和力常数 () 氧化甲醇。对这种含钕的 XoxF1 型甲醇脱氢酶的结构分析将扩展我们在令人兴奋的新领域——镧系元素生物化学方面的知识。镧系元素由原子序数为 57 至 71 的 15 种元素组成,在手机等各种高科技设备中都是必不可少的,但长期以来被认为是生物惰性的。当从火山泥锅中分离出的嗜酸甲烷营养菌嗜酸热甲基微菌 fumariolicum SolV 只能在供应镧系元素的生长培养基中生长时,镧系元素的生物学相关性才变得明显。我们通过从嗜热嗜酸甲烷营养菌中纯化和表征一种含钕的甲醇脱氢酶,扩展了在令人兴奋且快速发展的镧系元素生物化学领域的知识。