Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza, 60455-970, Brazil.
Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amaravati, Andhra Pradesh, 522503, India.
Sci Rep. 2024 Nov 19;14(1):28674. doi: 10.1038/s41598-024-79620-8.
Early diagnosis of breast cancer is exceptionally important in signifying the treatment results, of women's health. The present study outlines a novel approach for analyzing breast cancer data by using the CatBoost classification model with a multi-layer perceptron neural network (CatBoost+MLP). Explainable artificial intelligence techniques are used to cohere with the proposed CatBoost with the MLP model. The proposed model aims to enhance the interpretability of predictions in breast cancer diagnosis by leveraging the benefits of CatBoost classification technique in feature identification and also contributing towards the interpretability of the decision model. The proposed CatBoost+MLP has been evaluated using the Shapley additive explanations values to analyze the feature significance in decision-making. Initially, the feature engineering is done using the analysis of variance technique to identify the significant features. The MLP model alone and the CatBoost+MLP model are being analyzed using divergent performance metrics, and the results obtained are compared with contemporary breast cancer identification techniques.
早期诊断乳腺癌对于女性健康的治疗结果意义重大。本研究提出了一种新的方法,通过使用带有多层感知机神经网络(CatBoost+MLP)的 CatBoost 分类模型来分析乳腺癌数据。可解释人工智能技术被用来将提出的 CatBoost 与 MLP 模型结合起来。该模型旨在通过利用 CatBoost 分类技术在特征识别方面的优势来提高乳腺癌诊断预测的可解释性,同时也为决策模型的可解释性做出贡献。所提出的 CatBoost+MLP 使用 Shapley 加法解释值进行评估,以分析决策中的特征重要性。最初,使用方差分析技术进行特征工程,以识别重要特征。单独使用 MLP 模型和 CatBoost+MLP 模型,并使用不同的性能指标进行分析,将结果与当代乳腺癌识别技术进行比较。